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Abstract. We preset a new approach to modelling grouping in a highly-
parallel and flexible system. The system is is based on the Selective
Attention for Identification model (SAIM) [1], but extends it by incor-
porating feature extraction and grouping processes: the Grouping and
Selective for Identification for Identification model (G-SAIM). The main
grouping mechanism is implemented in a layered grouping-selection net-
work. In this network activation spreads across similar adjacent pixels
in a bottom-up manner based on similarity-modulated excitatory con-
nections. This spread of activation is controlled by top-down connec-
tions from stored knowledge. These top-down connections assign differ-
ent groups within a known object to different layers of the grouping-
selection network in a way that the spatial relationship between the
groups is maintained. In addition the top-down connections allow multi-
ple stances of the same objects to be selected from an image. In contrast,
selection operates on single objects when the multiple stimuli present are
different. This implementation of grouping within and between objects
matches a broad range of experimental data on human visual attention.
Moreover, as G-SAIM maintains crucial features of SAIM, earlier mod-
eling successes are expected to be repeated.

1 Introduction

SAIM (Selective Attention for Identification Model) is a connectionist model of
human visual attention[1]. SAIM’s behaviour is controlled by interactions be-
tween processing units within and between modules that compete to control
access to stored representations for translation invariant object recognition to
take place. SAIM gives a qualitative account of a range of psychological phenom-
ena on both normal and disordered attention. Simulations on normal attention
are consistent with psychological data on: two-object costs on selection, effects
of object familiarity on selection, global precedence, spatial cueing both within
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Fig. 1. Architecture of G-SAIM. The depiction of the contents of FOA and the tem-
plates of the knowledge network illustrates feature values arranged in a spatial grid.
Each grid element in the FOA represents the average feature values of a group, as
computed by the contents network.

and between objects, and inhibition of return. When SAIM was lesioned by dis-
torting weights within the selection module, it also demonstrated both unilateral
neglect and spatial extinction [2], depending on the type and extent of the le-
sion. Different lesions also produced view-centred and object-centred neglect,
capturing the finding that both forms of neglect can occur not only in different
patients but also within a single patient with multiple lesions. In essence, SATM
suggested that attentional effects on human behaviour result from competitive
interactions in visual selection for object recognition, whilst neurological disor-
ders of selection are due to imbalanced competition following damage to areas
of the brain modulating access to stored knowledge. In [3] we compared SAIM
with the most important models on human selective attention (e.g. MORSEL
[4], SERR [5], saliency-based models e.g. [6] and biased-competition models, e.g.
[7]) and showed that SAIM covers widest range of experimental evidence.

Interestingly, this comparison also highlighted the fact that few models of human
visual selection incorporate grouping processes, despite the fact that grouping
plays an important role in the processing of visual information in humans (see
[8] for a review). SERR [5] implemented a simple grouping process only based
on the identify of objects, not taking into account other forms of grouping, e.g.
similarity-based grouping. In its original form SAIM too employed very simplis-
tic grouping processes. In particular, units in the selection network supported
activity in neighbouring units that could contain a proximal element, leading



to grouping by proximity. Here, we present the results from new simulations
showing that SAIM’s architecture can be extended to incorporate more sophis-
ticated forms of grouping sensitive to the similarity of the feature present in the
display (bottom-up). In addition, experimental evidence shows that grouping is
also influenced by top-down factors (e.g. [9]). Therefore, grouping-SAIM does
not have a hard-wired coding of specific conjunctions of elements, but rather
uses a flexible grouping and selection procedure which operates in interaction
between image-based similarity constraints and top-down knowledge imposed
by an object recognition system. Moreover, this form of grouping does not only
operate within objects but it can also occur across multiple objects, linking sep-
arate objects into representations encompassing the whole display. This matches
data on human search, where people can respond at the level of the whole dis-
play to multiple, homogenous stimuli (e.g. [10]). Interestingly, the approach to
grouping and selection in the revised model produce a form of size-invariant
object representation as an emergent property.

2 SAIM

2.1 Overview
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Fig. 2. One-dimensional illustration of the structure and functioning of the grouping-
selection network (see text for details).

Figure 1 gives an overview of G-SAIM’s architecture and highlights the mod-
ular structure of the model. In the first stage features are extracted from the



input image. The contents network maps a section of grouped features into
a smaller Focus of Attention (FOA), a process modulated by the grouping-
selection network. In addition the mapping of the contents network into the
FOA is translation-invariant, enabling G-SAIM to perform translation-invariant
object recognition. The grouping-selection network has a multilayered structure
where each layer corresponds to a particular location in the FOA. The operation
of the grouping-selection network is controlled by competitive and cooperative
interactions. These interactions ensure that adjacent locations with similar fea-
tures are grouped together, whilst adjacent locations with dissimilar features
are separated into different groups. Grouped items are represented by conjoint
activity within a layer of the grouping-selection network and different groups
are represented in different layers. At the top end of the model, the knowledge
network identifies the contents of the FOA using template matching. Impor-
tantly, in addition to these feedforward functions there are feedback connections
between each module. The feedback connection from the knowledge network to
the contents network aims at activating only known patterns in the FOA. The
connection from the contents network into the grouping-selection network mod-
ulates the grouping and selection process so that patterns matching the content
of the FOA are preferred over unknown objects.

The design of G-SAIM’s network follows the idea of soft constraint satisfaction
in neural networks based on ”energy minimization” through gradient descent
[11]:
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0, (1)
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with z; being the internal activation of the unit ¢ and y; the output activation
of the unit 7. Both activations are linked through a non-linear function.

In G-SAIM the ”energy minimization” approach is applied in the following way:
Each module in SAIM performs a pre-defined task (e.g. the knowledge network
has to identify the pattern in the FOA). In turn, each task describes allowed
states of activations in the network after the network has converged. These states
then define the minima in an energy function. To ensure that the model as a
whole satisfies each constraint, set by each network, the energy functions of
each network are added together to form a global energy function for the whole
system. The minima in the energy function is found via gradient descent, as
proposed by [11], leading to a recurrent network structure between the modules.
At this point it should be noted that the gradient descent is only one of many
possible algorithms that could be applied to find the minimal energy. In our
earlier work this approach turned out to be sufficient for modeling psychological
data. For technical applications of G-SAIM alternative approaches might need
to be considered. In the following sections the energy functions for each network
are stated. The global energy function and the gradient descent mechanism are
omitted, since they are clearly defined by the subcomponents of the energy
function.



2.2 Feature extraction

The feature extraction results in a three-dimensional feature vector: horizontal
and vertical lines and the image itself. The lines are detected by filtering the

—2+4+1 -2
image with 3x3 filters (—2 +1 —2 for vertical lines and its transposed version
-2 +1 -2

for horizontal lines). The feature vector is noted as f]; hereafter, with indices i
and j refereing to image locations and n to the feature dimension. This feature
extraction process provides an approximation of simple cell responses in V1. As
becomes obvious in the following sections, the use of this simple feature extrac-
tion mechanism is not of theoretical value in its own right and arises primilary
from practical consideration (e.g., the duration of any simulations). In principle,
a more biologically realistic feature extraction process can be substituted (e.g.
using Gabor filter).

2.3 Contents network

The energy function for the contents network is:

EON(ySN yON) =N (i, — 1) v, (2)
ijlm

yﬁﬁj is the activation of units in the grouping-selection network and yﬁ% is
the activation of units in the contents network. Here and in all the following
equations the indices [ and m refer to locations in the FOA. The term (y5 ¥ —
%)2 ensures that the units in the contents network match the feature values in
the input image. The term yl(fn]\{ ; ensures that the contents of the FOA only reflect
the average feature values of a region selected by the grouping-selection network
(yiim; = 1). Additionally, since setting an arbitrary choice of yf7 ;s to 1 allows
any location to be routed from the feature level to the FOA level, the contents
network enables a translation-invariant mapping. It should be noted that the
energy function of the contents network results in a feedback connection to
the grouping-selection network. This connection provides the grouping-selection

network with featural information and its relative positions within the FOA.

2.4 Grouping-Selection network

The mapping from the retina to the FOA is mediated by the grouping-selection
network. In order to achieve successful grouping and selection, the grouping-
selection network has to fulfill certain constraints when it modulates the mapping
process. These constraints are that: (i) the content of a image location should be
mapped only once into the FOA; (ii) units whose related image pixels are similar
appear in the same layer (implementing similarity grouping) (iii) dissimilar fea-
tures are routed into separate layers; (iv) neighbouring groups should appear ad-
jacent in the FOA. Figure 2 illustrates the functioning of the grouping-selection
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Fig. 3. Simulation results with a single object in the input image. As a result of the
grouping mechanism implemented in the grouping-selection network, each layer repre-
sents a different group of the H.cross, indicating a grouping within an object.

network. For the sake of clarity only excitatory connections are depicted. The
grouping-selection network has a layered structure where each each layer is con-
nected to one node in the contents network. Within each layer and between each
layer there are excitatory connections depicted as dotted and bolt lines. These
connections are modulated by the similarity between adjacent pixels. The more
similar two pixels are the higher is the excitation of the within-layer connection
(bolt lines in Fig. 2) and the lower the excitation of the between-layer connec-
tions, vice versa.

In the Figure 2 the first two pixels and the last two pixels are dissimilar from each
other, whereas the pixels in the middle are similar to each other. Consequently,
the first and the last excitatory connection is strong between layers (diagonal)
whereas the excitation within the layer is strong in the middle pixels. During the
process of energy minimization process in G-SAIM this particular connectivity
pattern can lead to an activation of units on the diagonal for the first and the
last unit and an activation of units within one layer in the middle part (black
circles). Hence, the pixels in the middle are grouped together, whereas the dis-
similar pixel are separated from the middle pixels by activating different layers.
The similarity between pixels is determined in the following way:

sijsr = WY (F = flrajir)’) (3)
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The parameter for the nonlinearity g(z) is set so that the similarity values range
from 0 to 1 (0 = dissimilar; 1 = similar) for given a range feature values.

The energy function for activating similar pixels within a layer of the grouping-
selection network is:

Eemc,sim Zylmu Z Z Grs " Sijrs * ylmz-i—n]-‘rs (4)
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To prevent a region from spreading across the whole image an ”inhibitory” en-
ergy function was introduced in each layer of the grouping-selection network:

EinhiSim( Z Zylmm (5)
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The coefficients g,s drop off in a Gaussian shape to order to reduce the influence
of pixels that are further apart. In essence the two equations above represent
an implementation of a similarity-modulated Amari-network [12]. Amari showed
that under certain conditions gaussian-shaped excitatory connections within a
layer lead to contiguous areas of activation. In case of the grouping-selection net-
work the shape of these areas are influenced by similarity in order to implement
grouping.

To ensure that dissimilar adjacent pixels are assigned to separate layers, the
following energy function was introduced:

exc_dis __ E : § : § : GN
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The term (1 — s;j,5) is a measure for the dissimilarity between pixels.
The following term prevents units at the same image location to be activated in
different layers (constraint (i)):

Einh( Z Zylmz] (7)
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The Constraint (iv) was implemented by connecting all adjacent units which
are not connected by similarity modulated connections in an inhibitory way.
The energy functions above all include a stable state at zero activation. To
prevent G-SAIM from converging into this state an ”offset”-term was added to
the network:

EelTset(yON) = — 3"y (8)
ijlm

At this point the general nature of the four constraints implemented by the
grouping-selection network should be noted. The constraints are not specific



about which feature belongs to which layer. The exact assignment of the groups
to the different layers in the network is achieved by the top-down influence from
the contents network and the knowledge network. These networks feed featu-
ral information from known objects back into the grouping-selection network,
setting the featural preference of each layer for the groups. The top-down influ-
ence, paired with the generality of the grouping constraint, is at the heart of the
flexible grouping approach in G-SAIM.

Grouping-selection network:

Input image:

+ H
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Fig. 4. Simulation results. The result on the left illustrates a case with two different
objects (H and cross). The cross is suppressed and the H is selected. The simulation
result on the right shows a result of grouping the same object as the two Hs are selected
together.

2.5 Knowledge network

The energy function of the knowledge network is defined as

EKN(yKN,yCN) _ aKN(ZyKN _ 1)2 _
k
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. > o Wiy - (YN —wh 2y KN otherwise

The index k refers to the template unit. The term (3, y®~ — 1)? restricts
the knowledge network to activate only one template unit [13]. Each grid field



of a template has a flag attached to it indicating if this particular grid field
contains information relevant for the object. For instance, in case of the cross
the areas between the arms do not belong to the objects; consequently these
positions are assigned a ”"don’t select” flag. In future simulations the ”don’t
select”-flag will served to deal with cluttered scenes. In case of an activated
"don’t select”-flag the term }_, y,f N, yllf,fx alms at suppressing any activation
in the contents network and grouping-selection network. On the contrary, the
term >, (yﬁ,f\fl —wk )% y;fN ensures that the best-matching template unit

Imn
is activated. ™" and bX" weight these constraints against each other.

3 Results and discussion

Two sets of simulations were run to test the grouping mechanism in the grouping-
selection network. Two objects were used, a cross and an H. The knowledge
network had these two objects as templates (see Fig. 1 for an illustration). In
the first set of simulations input images with one object (cross or H) were used
(see Fig. 3). The results show that G-SAIM successfully segments parts of the
objects (H and cross) into sub-groups, as indicated by the fact that the arms of
the H/cross appear in separated layers of the grouping-selection network. This is
a direct outcome of the feature extraction of lines which leads to similar feature
values along the arms of the H and dissimilar feature values at its cross points.
These simulations illustrate the fact that the layers in the grouping-selection
network are not connected firmly to a certain feature. For instance, in the simu-
lation with cross as input the centre layer represents the cross point whereas for
the H the centre layer encodes the horizontal bar of the H. Compared to other
neural network approaches to grouping (e.g. [14]), where groups in one layer
for each feature, the grouping process in G-SAIM is both efficient and flexible.
Moreover, it allows the model to maintain vital information about the spatial
relation between groups within objects in a natural way. For instance, for the
H spatial relations between its arms are important information to distinguish it
from other objects, e.g. the cross. In G-SAIM this information is simply encoded
by assigning the different segments to different layers of the grouping-selection
network. It is unclear how such this form of coding could be achieved in a group-
ing mechanism where is a layer per feature. For instance in the case of the H
the arms might be represented in one layer, but then an additional mechanism
would be necessary to encode the spatial relations between the parts.

In the second set of simulations images with two objects were used. In these sim-
ulations the knowledge network had a slight bias towards activating the template
unit for the H. Figure 4 show the simulation results of the grouping-selection
network for two input images: on the left a cross together with an H and on the
right two Hs. With two different objects, the cross and the H, G-SAIM selects
the H and suppresses the cross. Hence, as in old SAIM, G-SAIM still performs
object selection. The second simulation examines G-SAIM’s behaviour with two
Hs in the input image (Fig. 4 right). In this case G-SAIM selected both objects
together. The decision concerning whether two objects are selected together or



not is influenced through the constraints implemented in the contents network.
If units in the grouping-selection network correspond to the same features in
the input image, the activation of these units contribute to the minimization
of the energy function. In contrast, if the units correspond to different feature
values, the activation in the grouping-selection network is suppressed, as was the
case for the cross-H simulation. These two contrasting behaviours, selection of
identical objects and competition of different objects, match extensive evidence
from human search (e.g. [10]) and from phenomena such as visual extinction in
patients with parietal lesions (e.g. [15]).

Finally, it should be noted that the representation of objects in the FOA pos-
sesses interesting properties. In the FOA the average feature values for each
group are represented. Since the features within the groups are similarly deter-
mined by the grouping-selection network, averaging provides a good approxima-
tion of the features values within the group. Consequently, when the size of the
regions changes and the features in the regions stay the same, the representation
in the FOA does not change, leading to a size-invariant representation of objects.
Moreover, the size-invariant representation in the FOA is very compact, e.g. it
represents the cross through a small number of units.

4 Conclusion

G-SAIM represents the first step towards modeling grouping and selective atten-
tion in an integrative approach. The core mechanism for the grouping process
is activation spreading, modulated by bottom-up similarity between pixels and
top-down influence from object knowledge. G-SAIM simulates the grouping of
regions within objects as well as grouping across multiple objects. To the best our
knowledge no other models integrate these two forms of behaviour. For instance,
the saliency-based approach to selective attention [6] does not have a grouping
mechanism. The same is true for the biased-competition approaches (e.g. [7]).
In terms of architecture G-SAIM is closest to the dynamic shifter circuits [16],
but again this model does not contain a feature extraction and grouping mech-
anisms. Moreover, other models on grouping utilize similar activation spreading
mechanisms (e.g. [14]. However, it is not clear how these models could cope with
multiple object situations.

In addition it should be noted that G-SAIM also keeps crucial features of the old
SAIM, especially the interaction of competitive and cooperative processes and
the multilayer structure of the grouping-selection network. Both elements were
responsible for the modeling successes of old SAIM. Hence, we expect G-SAIM
to be able reproduce the simulation results of old SAIM, whilst having added
capability in simulating grouping effects.

In future work we will aim at replacing the present feature extraction process
by a more biologically-plausible approach (e.g. using a Gabor filter) and at sim-
ulating psychological data on grouping and attention, especially experimental
evidence on the interactions between grouping and attention [9)].
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