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Abstract

We present a computational model of human visual attention, termed SAIM (Selective
Attention for Identification Model), based on the idea that there is competition between
objects for recognition. SAIM uses a spatial window to select visual information for object
recognition, ensuring both that parts are bound correctly within objects and that transla-
tion invariant object recognition can be achieved. We show how such a competitive model
can provide a qualitative account of a range of psychological phenomena on both normal
and disordered attention. Simulations of normal attention demonstrate two- object costs
on selection, effects of object familiarity on selection, global precedence, spatial cueing
both within and between objects, and inhibition of return. When simulated lesions were
conducted, SAIM demonstrated both unilateral neglect and spatial extinction, depending
on the type and extent of the lesion. Different lesions also produced view- centred and
object-centred neglect, enabling both forms of neglect to be simulated within a single pa-
tient. We discuss the relations between SAIM and other models in the literature, and we
highlight how emergent properties of competition within the model can unify (i) object-
and space-based theories of normal selection, (ii) dissociations within the syndrome of
visual neglect, and (iii) ’attentional’ and ’representational’ accounts of neglect.
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1 Introduction

Visual scenes typically contain many objects, yet actions may only be addressed to a
few. Consequently there needs to be some form of selection so that only representations
of behaviourally relevant objects are made available to response systems (Allport 1987).
Selection is also likely to be a necessary part of successful visual object identification. For
example, when multiple objects are present there may be problems in binding their parts
together without incorrect (illusory) bindings being formed (Feldman & Ballard 1982,
Hummel & Biederman 1992). A possible solution to this problem is to select only one
object for binding at a time, so that the parts of irrelevant objects do not compete in this
binding process (see Treisman 1998).
Psychological models traditionally hold that visual selection is spatially-based, assuming
(for instance) that selection involves some form of internal spotlight or zoom lens that
activated attended regions or leads to the inhibition of unattended regions (Eriksen &
Yeh 1985, Posner 1980, Treisman & Gormican 1988). Strong evidence for spatial selec-
tion comes from studies of cueing which show that detection of a target is enhanced when
it is preceded by a spatially valid cue (Posner 1980). Models of selection need to account
for how spatial cueing may facilitate responses to target stimuli.
Other work, though, demonstrates that selection is influenced by grouping between the
parts of objects, so that parts belonging to the same object tend to be selected together.
To give three examples: (i) the detrimental effects of invalid spatial cues are reduced if
cues and targets fall within the same perceptual object (Egly et al. 1994, Kramer et al.
1997); (ii) the costs in detecting two stimuli presented simultaneously relative to when
they are presented successively in time are reduced if the stimuli are attributes of a single
object (Baylis & Driver 1993, Duncan 1984, Vecera & Farah 1994); and (iii) effects of
response congruency between distractors and targets are determined by whether stimuli
group, with interference being stronger between members of a group then between mem-
bers of separate groups (Baylis & Driver 1992). To accommodate such results, theorists
have suggested that object recognition processes can interact with spatial selection to
enable grouped parts to be selected together. For example, activation in stored represen-
tations may feedback to location-coded representations of parts, forcing spatial attention
to spread across whole objects (Farah 1990, Humphreys & Riddoch 1993); alternatively,
recognition procedures may be able to recover parts of known objects even when some
are processed sub- optimally (i.e., without attention, see Mozer (1991)). Thus in some
circumstances selection appears to be ’object-based’ and not simply ’space-based’.
In the present paper we aim to provide a formal model of how spatial and object in-
formation may interact to enable objects to be selected for identification: SAIM (the
Selective Attention for Identification Model). The model is applied to ’classic’ studies of
visual selection in normal participants demonstrating both space-based and object-based
constraints on performance. In SAIM selection is mediated by a form of ’attentional
window’ that is tuned to the location of a target; however this tuning process is influ-
enced by higher- level properties of objects, making selection sensitive to object- as well
as spatial information. In addition to this, we show that SAIM can capture various neu-
ropsychological impairments of visual selection, that are difficult to account for in other
frameworks.
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1.1 Neuropsychological impairments of visual selection

1.1.1 Visual neglect

Arguments for both space-based and object-based effects on visual selection are demon-
strated in a dramatic fashion in neuropsychological disorders such as visual neglect and
extinction. Following damage to tempero-parietal and fronto- parietal regions, patients
may fail to respond to stimuli presented on the side of space opposite to their lesion: visual
neglect (see Husain & Kennard 1996, Humphreys & Heinke 1998, Robertson & Marshall
1993, Walker 1995). Performance can be affected by the position of an object relative to
the patient’s body (Karnath et al. 1991, Riddoch & Humphreys 1983) and also, in some
cases, by the positions of parts relative to an object. For example, in neglect dyslexia the
impaired identification of letters on the contralesional side of a word can occur even when
the word is presented in the ipsilesional visual field (Young et al. 1991), suggesting that
neglect is then determined by the positions of the letters in the word. There can also be
neglect of the contralesional parts of objects when objects are rotated so that these parts
appear in the ispilesional visual field (Behrmann & Tipper 1994, 1999, Driver & Halligan
1991) and patients can detect stimuli on the ipsilesional side of an object better than
stimuli on the contralesional side, even when the former stimuli fall in the contralesional
field and the latter in the ipsilesional field (Driver et al. 1992, Humphreys & Heinke 1998).
Indeed neglect tied to the positions of parts in objects can be doubly dissociated from
neglect tied to the positions of stimuli in retinal and/or body-space; thus in Humphreys
& Heinke (1998) a case series of patients was reported in which some showed neglect
based on the positions of parts within objects irrespective of the positions of the objects
in the visual field, whilst for others there was little effect of stimulus position within an
object but there were large effects of position in the field. We have termed these disorders
”within-object” and ”between-object” neglect the latter title being appropriate because
neglect is apparent only when there are multiple objects in the field and thus it does not
reflect the field position per se (see Humphreys 1998, Humphreys & Heinke 1998).
Both within-object and between-object neglect can even be demonstrated in a single pa-
tient. Humphreys & Riddoch (1994, 1995), for example, reported a patient with bilateral
lesions who showed left-side neglect within objects but neglect of the right side of space
when stimuli were coded as separate objects (see also Costello & Warrington 1987, Cubelli
et al. 1991, Riddoch et al. 1995a,b, for similar cases). This contrasting pattern occurred
even with the same stimulus, depending on how the stimulus was represented for the task.
There was left neglect when single words were read as perceptual wholes but right neglect
of the identical visual stimulus when the patient was required to read aloud individual
letters (treating each letter as a separate perceptual object). Humphreys and Riddoch
proposed that the bilateral lesions in this patient resulted in deficits to different represen-
tations of visual space: there was damage to one representation in which elements were
coded with respect to their position within an object (a ”within object spatial represen-
tation”) and damage to another representation in which elements were coded as separate
objects (a ”between object spatial representation”).
These different forms of neglect are related to problems in visual selection. For example,
cueing patients to attend to the affected side can improve their performance significantly
(Posner et al. 1984, Riddoch & Humphreys 1983), and impaired responding to contrale-
sional stimuli is most pronounced when patients are cued to the ipsilesional side (Posner
et al. 1984). Cues to attend to parts within objects, or to the positions of multiple objects
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in the visual field, can also be differentially effective for the contrasting problems. In the
case reported by Humphreys & Riddoch (1994, 1995), cueing to attend to the left side of
individual objects improved within-object neglect, though cueing to the left side of a page
filled with words had no effect. In contrast, cueing to the right side of a page reduced
the neglect of separate whole objects on the right; cueing to the right sides of individual
objects then had little effect. Egly et al. (1994) further report that left parietal damage
selectively affects the ability to shift attention from one object to another, whilst right
parietal damage affects attentional shifts from one location to another (see also Buck et al.
(1999), for evidence for a similar distinction in patients with varying patterns of degen-
erative change). There are grounds here for arguing that forms of selection operate with
each type of representation, with contrasting deficits in selection arising after different
brain lesions.

1.1.2 Visual extinction

An apparently milder problem in visual selection occurs in patients showing visual ex-
tinction. The term extinction is used to refer to patients who can detect a single stimulus
presented on the contralesional side of space, but who fail to detect the same item when
it is exposed simultaneously with an item on the ipsilesional side (e.g. Karnath 1988).
This deficit arises when there is competition between the ipsi- and contralesional items
for selection, when consequences of a spatial bias are exposed (see Duncan et al. 1997).
Recent studies of extinction have demonstrated that effects can vary as a function of
grouping between elements in the ipsi- and contralesional fields. Extinction is reduced
when elements group relative to when they fail to group and so compete as separate ob-
jects (Driver & Mattingley 1995, Gilchrist et al. 1996, Humphreys 1998, Ward et al. 1994).
In such instances a putatively spatial deficit can be over-ridden by grouping between the
parts of objects. The nature of the spatial code involved in such cases remains unclear
however. An item at the centre of the field can be detected or extinguished as a function
of whether the competitor appears on the ipsi- or contralesional side (Humphreys et al.
1996b). Absolute retinal position seems less important here than the relative locations of
stimuli.
These data demonstrate both dissociable and interactive effects of object- and spatial-
coding on visual selection and, as we shall argue, they provide strong constraints on
functional models of selection in vision. However, whether disorders such as unilateral
neglect and extinction are themselves directly due to impaired attentional processes has
been the subject of heated debate. Some authors have argued for there being a specific
disorder of visual attention; for example, poor disengagement of attention from ipsile-
sional stimuli (Posner et al. 1984), poor automatic orienting of attention to contralesional
events (Riddoch & Humphreys 1983), or inappropriate automatic orienting of attention
to ipsilesional stimuli (Ladavas et al. 1990). In contrast, other authors have argued that
these problems are not due to impaired attention but rather they reflect damage to par-
ticular spatial representations (e.g. Bisiach & Luzzatti 1978, Caramazza & Hillis 1990).
The representations involved may vary according to the reference frame on which they
are coded (e.g., some being retinotopic, others object- based; Caramazza & Hillis (1990),
Miceli & Capasso (2001)), and this may help explain why some deficits are influenced
by the position of the stimulus relative to the patient whilst others are affected by the
positions of parts with respect to the object (see above). Also access to damaged repre-
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sentations may be improved by valid attentional cueing and disrupted by invalid cueing,
making it difficult empirically to separate ’attentional’ and ’representational’ accounts of
neglect and extinction.
The model we will present, SAIM (for Selective Attention for Identification Model), at-
tempts to achieve translation invariant object identification by mapping retinally-coded
input through to higher-level ’object’ representations which respond to stimuli irrespec-
tive of their original presentation location. Such translation-invariant identification is a
pre- requisite for any successful model of object recognition (see Marr 1982). To ensure
that the mapping is successful, and that binding problems are not introduced by high-
level representations being activated by multiple stimuli, there is competition for selection
between objects so that stored representations are activated primarily by one object in
the field; selective processing of objects is an emergent property of this competition. In-
terestingly, following damage to representations mediating the mapping from retinal to
high- level descriptions, forms of visual neglect and extinction occur. These deficits reflect
biases in competition for access to high-level representations, and they are influenced by
spatial cueing and by the presence of competing objects in the visual field. However, since
attentional selection here is an emergent consequence of competition between particular
spatial representations of objects, it makes little sense to describe neglect and extinction
as either ’attentional’ or ’representational’ in nature; within our framework, neglect and
extinction are both ’attentional’ and ’representational’ deficits.

1.2 Computational models of visual selection

SAIM is a computational model of both translation invariant object recognition and vi-
sual selection. A preliminary version of the model was presented in (Humphreys & Heinke
1998, Heinke & Humphreys 1997, Humphreys & Heinke 1997). In this paper we report
the model in full and apply it to a range of experimental and neuropsychological data on
visual selection.
Over the past decade, a number of explicit computational models of visual attention
have been developed. Some have been used to simulate experimental results on nor-
mal visual selection (e.g., the ’Feature Gate model’, Cave (1999); Guided Search, Cave
& Wolfe (1990), Wolfe (1994); MORSEL, Mozer (1991, 1999); Mozer & Sitton (1998);
SEarch via Recursive Rejection [SERR], Humphreys & Müller (1993); SeLective Atten-
tion Model [SLAM], Phaf et al. (1990)). Some have been applied to neuropsychological
data (MORSEL, Mozer et al. (1997); Mozer (1991) Mozer (1999); SERR, Humphreys
et al. (1992), Humphreys et al. (1996b); the ’spatial transformation model’ of Pouget &
Sejnowski (1997)). Further categories of model have been developed in order to illustrate
neurobiological constraints on selection (Deco & Zihl 2001, Niebur et al. 1993, Olshausen
et al. 1993, 1995, Pouget & Sejnowski 1997, Pouget & Snyder 2000, Tsotsos et al. 1995,
Usher & Niebur 1996), and to solve particular computational problems in vision (e.g.,
view- invariant object recognition; Hinton (1981b,a). Common to many of these models
is the use of competitive interactions between processing units (representing in some in-
stances objects or object parts, in others positions in a spatial attention network), which
enforce forms of ’winner take all’ behaviour so that units given some initial advantage
inhibit other units. This advantage can be based on a spatially coincident precue (ben-
efitting one position in an image over others; (e.g. Mozer & Sitton 1998), on grouping
support between like elements (Humphreys & Müller 1993), or on top-down activation
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from memory representations for targets (Phaf et al. 1990, Usher & Niebur 1996). This
idea, of selection by forms of competition between stimulus representations, is also found in
psychological theories such as the ’integrated competition’ model (Duncan 1998, Duncan
et al. 1997). In addition, following selection of one target by means of these competitive
interactions, computational models have employed forms of self-inhibition of targets (and
their associated spatial representations) to enable other items to be selected subsequently
(Humphreys & Müller 1993, Koch & Ullman 1985, Olshausen et al. 1993, 1995). SAIM
also incorporates both winner-take-all competition and self-inhibition following selection,
to enable selective processing to emerge. Winner- take-all competition is affected by both
bottom-up and top- down factors. Top-down factors include stored object representations
in addition to representations in ’working memory’ pre-activated according to task goals
(cf. Usher & Niebur 1996).
SAIM is closest in architecture and processing operations to the ’dynamic routing circuit’
model proposed by Olshausen and colleagues (Olshausen et al. 1993, 1995), and to the
model of view-invariant object recognition proposed by Hinton (1981b,a). Olshausen et
al. provided an ’in principle’ analysis of the model, showing that it could successively
select individual (known) letters when multiple letters were present in the visual field;
however they did not apply the model to either psychological or neuropsychological re-
sults on visual selection in humans. Hence it is unclear whether such an approach could
provide a viable psychological model. Also SAIM extends the Olshausen et al. model by
incorporating top- down constraints on selection that operate in parallel with bottom-up
processes of grouping, a step that is necessary to accommodate data on both normal and
impaired human visual selection. For example, visual neglect and even extinction can be
reduced if the letters form a known word rather than a nonword, even when attempts are
made to rule-out guessing biases (e.g., see Kumada & Humphreys (2001), for evidence on
extinction; see Riddoch et al. (1990); Sieroff et al. (1988), for evidence on neglect). This
lessening of neglect and extinction occurs even though there there is no low-level infor-
mation that would favour the grouping of letters in words over those in nonwords. In this
last instance, grouping seems to be contingent on top-down knowledge, by dint of letters
activating a common stored representation for the word. Using top-down constraints to
influence selection seems to be a useful procedure for capturing such results. Hinton’s
model used top-down knowledge to guide perception, but it has not been applied in detail
to modelling processing when multiple items are present, nor does it address a large body
of psychological data (though see Hinton & Lang (1985)). Our aim in implementing SAIM
was to provide a test of this combined bottom-up and top-down approach to selection by
assessing its qualitative fit to psychological and neuropsychological data. To illustrate the
general properties of SAIM, we first describe properties of the dynamic routing circuit.
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1.2.1 The dynamic routing circuit

In the dynamic routing circuit, size and translation invariant object identification is
achieved by mapping retinal input through multiple stages into a smaller ’focus of at-
tention’ (FOA). When multiple objects are present, the circuit has to select one in order
to avoid overlapping features from different objects being mapped in to the FOA; any
such mapping can disrupt object identification by distorting the input to the recogni-
tion system: there would be a form of ’binding problem’. The routing circuit contains
two components, one that performs the mapping into the FOA from the retina and one
that controls this mapping according to the task demands and the nature of the stimuli
present. We term these the ’contents’ network (reflecting the contents of the visual field)
and the ’selection’ network (which selects between multiple objects, to optimise object
identification).
One way to conceptualise the contents network in such models is as a connection matrix
specifying all possible relationships between locations on the retina and locations in the
FOA, as illustrated in the simple case for a one- dimensional input with just 4 retinal lo-
cations and 3 locations in the FOA, in Figure 1. Here a high level of activation in one unit
in the contents network instantiates a particular correspondence between a given retinal
location and a given location in the FOA. Now in the example given, there is Gaussian
input present, centred on location 2 in the retina; the goal of the circuit is to map this
input into the FOA. For example, to map the input from retinal locations 1-3 into units
1-3 in the FOA, the units shown in black in the contents network need to be active and
other units in this network inactive (these would map other retinal units into the same
units in the FOA). However, if the Gaussian input was centred at location 3 on the retina,
and this center of activity was to be mapped into unit 2 in the FOA, then the lower units
in the contents network (shown here in white) would need to be active and the others
inactive. The role of the selection network in the model is to gate activity in the contents
network, enabling activity to be passed on from some but not other units in the contents
network. This ’selects’ which mapping is implemented from the retina to the FOA. Units
in the selection network are shown on the left side of Figure 1. In this example, the units
in the selection network are mutually inhibitory with one another so that they compete
to establish which units in the contents network have most effect on units in the FOA.
Units in the FOA are activated by multiplicatively combining activity from the contents
network with activity from the selection network. This interaction between the contents
and the selection network enables activity to be mapped from the retina to the FOA in
a purely bottom-up manner, depending upon which units in the contents and selection
networks are most strongly activated by the input.

It is possible for networks of this sort to achieve size invariance (see Olshausen et al.
1993, 1995). Size invariance can operate by introducing multi-scale representations, each
acting at different resolutions, and the selection network structure can be extended to
operate at each resolution with a switching procedure being required to move from one
resolution to the next. In addition, the number of units and connections required within
the selection network can be reduced by having these units connect to several units in
the contents network, with the strengths of the connections varying in a Gaussian fashion
(e.g., maximum weight to the central unit and reducing weight to units either side of this
in the contents network). However, these additional factors are not of central concern
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Selection
Network

Contents
Network

FOA

1 2 3

1 2 3

4

Retina

Input

Figure 1: Illustration of a small-scale dynamic routing circuit. Each unit in the contents
network represents a correspondence between the retina and the FOA; the selection net-
work determines which correspondences are instantiated. In this example, Gaussian input
activates retinal unit 2 most, and units 1 and 3 to a lesser degree. The circuit acts to map
retinal input into the FOA, based on competition between units in the selection network.
Not all connections are shown.

here, where we deal with the issue of whether the dynamic routing circuit approach
to translational invariance can capture important aspects of visual representation and
selection in humans. For this reason, and to simplify the analysis, SAIM uses one-to-one
mappings from the selection to the contents network (with no Gaussian spread), and
it operates at just one level of resolution. We return to discuss issues about biological
plausibility in the General Discussion.

1.3 Architecture of SAIM

In addition to having a dynamic routing circuit to achieve translation invariant mapping
into the FOA, the full version of SAIM also contains a higher-level ’knowledge network’, to
simulate object recognition processes, and a mechanism to enable attention to be shifted
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Figure 2: The architecture of SAIM.

from an object once recognized to other objects in the field (using a location map). Figure
2 shows the full architecture. The details are outlined in the following paragraphs.

1.3.1 Dynamic routing circuits in SAIM

SAIM uses one-to-one mapping from the retina to all locations in the FOA, mediated
by connections between the contents and selection networks. In principle this allows any
arbitrary mapping to be achieved from the retina to the FOA. However, such mappings
should not be arbitrary. For example, in order for subsequent recognition to be successful,
neighboring units on the retina should be mapped into neighboring units in the FOA
(e.g., units 1 and 2 on the retina into units 1 and 2 in the FOA, in Figure 1), and the
relative orientations of the retinal units needs also to be preserved. Constraints needed
to preserve neighborhood relations and relative orientation information are embodied
into the architecture of SAIM by means of the connection weights between units in the
selection network, and they are illustrated in Figure 3, which provides an example of how
a one-dimensional input might activate both the contents and the selection networks. The
constraints incorporated into the selection network in SAIM are that: (i) neighborhood
relations in the retinal input tend to be preserved in mapping through to the FOA; (ii) one
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Figure 3: An illustration of how connections between units in the selection network impose
constraints on the mapping from the retina to the FOA in SAIM. ’Vertical’ and ’horizontal’
connections in the selection network are mutually inhibitory whilst ’diagonal’ connections
are mutually excitatory; see the text for details.Within the Selection network columns
contain units activated by one given position on the retina; rows contain units that activate
one position in the FOA.

retinal unit should not be mapped more than once into the FOA; and (iii) one unit in the
FOA should not receive input from more than one retinal unit (the converse of (ii)).These
constraints define the activity patterns in the selection network that are permissable and
others that are not. Following a procedure suggested by (Hopfield 1984, Hopfield & Tank
1985), we defined an energy function for which the minimal values were generated by just
the permissable activity values. To find these minima, a gradient descent procedure was
applied resulting in a differential equation system, given in the Appendix. The differential
equation system defines the topology of the network (i.e, the strengths and signs of the
connections between units).
The constraints are captured in the following way. First, there are excitatory connections
between units in the selection network that would preserve neighborhood relations in
mapping from the retina to the FOA; these are indicated by the arrow connections between
units along the diagonals of the selection network shown in Figure 3. The strength of
the excitatory connections has a gaussian function with respect to the distance between
units; more proximal units have stronger connections than more distant units. This
produces the sensitivity of the model to the spatial proximity of pixels in an image.
Second, there are inhibitory connections between units in the selection network that



Attention, spatial representations and visual neglect 10

would map the same retinal location into different units in the FOA. In Figure 3 these
are illustrated by the –o connections along the vertical axes of the selection network.
Although only connections between neighboring units are shown for illustrative purposes,
there are inhibitory connections (with equal weights) between all units along the vertical
and horizontal axes of the selection network. For example, in our figure units e and h
would map retinal location 2 into different units in the FOA (via units ii and iv in the
contents network); hence units e and h are mutually inhibitory. Third, there are inhibitory
connections between units that would map from different units in the retina into the same
unit in the FOA. These are illustrated by the –o connections along the horizontal axes
of the selection network shown in Figure 3. For example, units e and f ’compete’ to
gate activity into unit 2 in the FOA (via units ii and v in the contents network). The
implementation of these constraints in the dynamic routing circuit is somewhat analogous
to the way in which constraints are effected in the Marr-Poggio network for stereo depth
(see Marr & Poggio 1976, Olshausen et al. 1993).
As we shall demonstrate, one of the emergent properties of these constraints is that
the units in the selection network that receive the most support are those that lie at the
location of what approximates to the Gaussian mass of a shape1. The greater the Gaussian
mass (determined by, amongst other things, the number of immediately surrounding active
pixels), the faster a stimulus is mapped through to the FOA (objects with higher Gaussian
mass receiving most neighborhood support). Furthermore, the location of the Gaussian
mass of a shape tends to be translated into the center of the FOA (since this receives
most surround support).
The model as described enables input to be mapped into the FOA in a manner that is
translation invariant; any region of the retina can be attended2 We did not introduce
constraints that could reflect retinal acuity in the model, though this could be done by
having inhomogeneities in resolution across the retina2.

1.3.2 The knowledge network

In addition to having a dynamic routing circuit to achieve translation invariant mapping
into the FOA, the full version of SAIM also contains a higher-level ’knowledge network’,
the activation of which achieves object recognition. The knowledge network contains
’template’ units, each of which represents a known object. Template units are activated
on the basis of learned weights which connect with pixels in the FOA. Note that, in general,
objects are mapped so that the location of their Gaussian mass falls at the center of the
FOA (see above). Consequently, stored knowledge of objects is sensitive to the spatial
positions of features relative to the centroid of a shape (cf. Marr 1982). The stored units
also act to bind the parts of objects to their spatial positions within the shapes, and
template units are activated maximally when features fall in spatial locations that match
those specified in the template. Hence templates are sensitive to viewing angle, though
they are translation invariant (being activated through the FOA, irrespective of the lateral
position of an object on the retina).
The introduction of the knowledge network into SAIM adds a top-down constraint on
selection in the model. The input will activate most the best matching template, which,

1see Study 1 for further details
2We did not introduce constraints that could reflect retinal acuity in the model, though this could be

done by inhomogeneities in resolution across the retina
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Figure 4: Top-down feedback in SAIM. Activation from template units in the knowledge
network feedback to activate units in the selection network supporting activation in an
appropriate attended location (in the FOA). Only relevant connections are shown. Note
that top-down connections are the same strength as the bottom-up ones, from the FOA
to the templates. The top- down connections from one location in the template (and the
FOA) feed-back to all units in the Selection network that would activate this location in
the FOA and template (i.e., they feed-back to all units within one row of the Selection
network as shown in this figure).

given the ’winner take all’ properties of the network, leads to inhibition of templates that
match less well. To integrate this constraint into SAIM, an energy function was defined
for the knowledge network and added to the energy function in the selection network.
Here the gradient descent procedure results in a topology which connects the template
units in a winner- take-all (WTA) fashion (see the Appendix for details).
The templates in SAIM generate top-down modulation of the selection network. The
top-down modulation can be thought of in the following way. Each template modulates
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the effect of input coming from the retina into the selection network via weighted top-
down connections. For simplicity, the weights on these top-down connections are set to
be the same as the weights on the bottom-up connections into the template unit. Activity
in a template unit is then multiplied by the top-down weights (in a standard activation
function) to influence the selection network. This is done by feeding back activation, via
the weighted connections, to the horizontal layers within the selection network, where the
units correspond to one location in the FOA (e.g., in Figure4, feedback via W3 from the
template unit would be transmitted to the top horizontal row of the selection network,
where units correspond to position 3 in the FOA). Essentially, the top-down activity
from a template is used as another input that influences activity in the selection network,
with the top-down activity being multiplied with rather than simply being added to
the bottom-up activity in the selection network (by bottom-up activity here we refer to
excitation from the retina and from the inter-level connections in the selection network).
This top-down activity provides positive, multiplicative support for units in the selection
network that will lead to the selection of pixels in the FOA that match the template; it
also decreases support multiplicatively for units that would lead to the selection of other
pixels. In effect, it provides a representation of how well bottom-up activity matches the
template units and it ’sharpens’ activity in the selection network to favour known objects
(due to its multiplicative operation). This process is illustrated in Figure 4. Here activity
in the FOA leads to bottom-up activation of a template unit, via weighted connections
w1-w3. Activity for each location in the template is then fed-back to units in the selection
network corresponding to that location, with the feed-back being modulated by the same
weights (w1-w3). The feed-back support is the highest for units in the selection network
with matching retinal activity. This is shown by the dark circles in the selection network
in Figure 4, whereas units where the bottom-up activity does not match are inactive (in
white). Note that, because the top-down modulation from the templates is not tied to
any specific retinal location, it is translation invariant; it is applied to all units in the
selection network that would support the active template. Nevertheless, since top-down
activity combines with bottom-up activity within SAIM, and bottom-up activity is tied
to retinal location, the effect of top-down feedback is to improve selection for a particular
object in a particular part of the visual field3.

1.3.3 Shifting attention and the location map

One further important property of SAIM is its ability to shift attention between items,
once stimuli are identified. The competitive nature of the model means that, by and large,
identification is limited to one item at a time. When multiple objects are present, there
needs to be some mechanism to enable each to be selected in turn. In the model switching
of attention is accomplished by top-down inhibition which takes place once a template
unit reaches a given threshold: there is temporary suppression both of the selected tem-
plate and of the selected location. This enables other items in the field to then win the
competition for selection, so that they in turn become attended. Suppression of previous
winners provides a form of ’inhibition of return’ (IOR; cf. Posner & Cohen (1984)). To
enable the location of selected items to be inhibited, activity in units corresponding to

3Where units in the selection network are inactive, due to lack of bottom-up support from the retina,
the top-down feedback is multiplied by zero and has no effect. Feedback is effective only for units in the
selection network activated in a bottom-up fashion.
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each retinal location in the selection network is summed and passed on to a ’location map’,
which essentially represents which locations currently hold items of attentional interest.
Early in the processing of a display with multiple objects, several locations in the map
will be occupied. However, as the dynamics of competition within the selection network
evolve, so active units in the map will decrease until only one remains; this represents
the location of the attended object. Once the target is selected, the active unit in the
location map inhibits input from relevant location in the visual field, so that it is no
longer represented in the selection network (see Figure 2, where the inhibitory link from
the location map to the selection network is specified). This leads to a discontinuity in the
energy function from which the settling process must start again, but in this case there is
a decreased likelihood that spatial regions previously attended are subsequently selected.
Inhibited positions in the location map also provides SAIM with a form of spatial memory
for previously attended regions of field.
Several previous models of visual attention have incorporated the idea of a location map
to represent regions of current interest in the visual field (e.g., see Koch & Ullman (1985)
and Wolfe (1994), who both use a ’saliency’ map with some similar properties). Unlike
these models, however, we do not use the location map as the locus of the competitive in-
teractions that determine selection; in SAIM these interactions take place in the selection
network. This enables SAIM to separate out the factors that determine selection, which
include grouping factors (such as inter-element proximity) and stored knowledge, from
information about the locations that attended objects occupy. In addition, the location
map in SAIM can provide some implicit indication of the number of items in the field
(the initially activated locations), and it modulates the switching of attention from one
selected object to other to-be-selected objects. In the General Discussion we elaborate
on why these are useful properties of the model and how they fit with neuropsychological
and physiological results.
There are some interesting implications of the way in which the location map, and inhibi-
tion of return, is implemented in SAIM. For example, units within the selection network
can be activated (by excitatory spreading of activation) even if they are unoccupied on
the retina. Thus when a target is mapped into the center of the FOA, the ’empty’ re-
gions around it (in the FOA) are active within the selection network and in the location
map. Following selection, any inhibition of the relevant units in the location map, and
associated active units in the selection network (via IOR), suppresses units for these sur-
rounding, ’empty’ regions of field. It follows that inhibition effects should not be confined
to previously attended objects but they should be found with objects presented in retinal
positions adjacent to those of previously attended objects. Effects along these lines have
been reported by Kim & Cave (1995), Klein (1988) and vonMühlenen & Müller (in press).
In addition, there is also temporary inhibition of the template of the target first identi-
fied. This produces a bias against attending to the same object again, and a bias towards
attending to new objects (cf. Gibson & Egeth (1994); Tipper et al. (1991)), a strategy
with obvious advantages for organisms in the real world. Note that template-inhibition is
translation invariant, since the same template is activated by objects irrespective of their
position in the visual field. There is inhibition of specific, known and previously attended
objects, as well as inhibition of the local spatial area surrounding a previously attended
target. In the General Discussion we return to consider how well this ’object specific’ as-
pect of processing in SAIM relates to evidence on ’object-based’ IOR. Following selection
and the imposition of IOR, the model begins processing afresh, with it now biased against
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attending to previously occupied retinal positions and previously attended objects.

1.3.4 Discussion

The architecture of SAIM is of general interest because the model has no commitment
to certain experimental paradigms; for example it can be used to model detection, letter
recognition, object recognition, even search. This distinguishes SAIM from at least some
other models of visual attention, which have been designed specifically to capture par-
ticular procedures (eg., cueing attention, in Cohen et al. (1994); search for T-elements,
in Humphreys & Müller (1993); selection of letters based on their colour; Phaf et al.
(1990)). This broader approach should, in the longer term, enable SAIM to function as
an architectural framework for a wide range of visually-mediated tasks.
SAIM also operates in a deterministic manner, and so all effects are stable across multiple
runs of the model with the same input. Given the same input, the model will always pro-
duce the same result (even if the effect if small). Performance of the model is measured in
terms of network iterations (where 1 iteration involves updating all units in the model on
one occasion). For simulations involving object identification, identification was judged
from the activation of a template unit to a set threshold (.9). For simulations of detection
performance (where the stimulus need not be identified), the duration of selection was
judged to be the average time taken for units in the selection network to be activated.
Since activation in the selection network biases activation in the FOA, this is equivalent
to setting a threshold for target detection, based on the integration of activation within
the FOA. Parameters for the network are given in the Appendix.
Our goal in this paper is to capture qualitative patterns of performance that can be ob-
served in studies of human visual selection; for example, that there is a bias towards
attending to the center of mass of a stimulus, that there are costs to selection when two
relative to when one stimulus is presented (particularly for the object selected second),
that there are costs when attention is cued to the wrong spatial position or object. We
ask, can a model which employs the general architectural constraints of SAIM capture
the required pattern of constraints on selection found in human subjects, despite the sim-
plifying assumptions made? We return to consider the relations between qualitative and
quantitative modelling in the General Discussion. In the General Discussion we also elab-
orate on factors the model does not accommodate and on how a qualitative comparison
could lead to SAIM being falsified.

1.3.5 Testing the model

In order to test SAIM, we explore the behaviour of the model as a function of a number of
variables known to affect both normal and disordered visual selection in humans (including
factors such as (i) presenting two rather than one object, (ii) spatial and object-cueing,
and (iii) the effects of stored knowledge on visual neglect, etc.). Altogether we simulate
16 different sets of results from the psychological literature using essentially a single set
of parameters. In Study 1, we present the model in its ’bottom-up’ form (without the
knowledge network), simply to show how bottom-up factors help determine the operation
of the model when it is tested in its full form. This helps us to understand the operation
of the model, even though simulations of psychological data are always based on the full
version of SAIM (with the knowledge network incorporated). The parameters for these
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initial, bottom-up simulations were kept constant when the knowledge network was added
to the model. The only changes subsequently made to the model were to alter the degree
of top-down feedback to favor one target over another, either by increasing the starting
level of activation for one template in the knowledge network or by increasing the weights
connecting to and from one template (allowing Hebbian learning to take place). These
last changes were made solely to explore the impact of object familiarity on selection; in
this sense the changes do not constitute attempts to fit the model to the data but rather
they provide predictions of how a particular variable (object familiarity) will impact on
selection within the model.
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2 Modelling normal visual selection

In this first section, we assess whether SAIM provides a reasonable account of visual se-
lection in normal (non-brain damaged) humans. We explore both the general properties
of the model (bottom-up procedures for selection, performance with single vs. multiple
items, attention switching in the full version of the model and effects of stored knowledge
on selection), and its application to paradigms used to examine visual selection in hu-
mans (e.g., the ’Posner’ cueing paradigm, and the combined effects of spatial and object
information in selection). SAIM provides a general framework for understanding selective
processes in vision, including those found in visual search. However our interests here are
focused on performance of the model when no more than two items are present in the
field. As we shall show in the section on attention switching (Study 3), the mechanisms
present in the model can transfer to search in a straight- forward way.

2.1 General properties of SAIM

Stimulus: FOA:

t=290 t=390 t=420 t=470 t=520

RTfoa = 470

Figure 5: Illustration of the behavior of SAIM in bottom-up mode, when presented with a
+ stimulus. t gives the time in network iterations. RTfoa gives the time for the detection
threshold to be reached in the FOA (again in network iterations). Activation is depicted
within the FOA as processing time increases.

2.1.1 Study 1. Bottom-up mapping

Method
As we have outlined, SAIM incorporates both bottom-up and top-down constraints on
selection (e.g., inter-element proximity and stored object knowledge). In the full version of
the model, these factors interact in determining selection, as we illustrate in the following
studies. However, due to interactions from stored knowledge, it can be difficult to evaluate
how the bottom-up constraints influence selection in their own right. To show how these
constraints operate, we report three sets of simulations in which the model operated
without the knowledge network. The parameters of the bottom-up part of the model
(i.e., the full architecture without the knowledge network; see Figure 2) were the same as
in the simulations using the full architecture. These bottom-up simulations, then, simply
allow us to see how the model is biased to select some perceptual structures over other,
even prior to it learning object representations for the stimuli. In these and all other
simulations shown here, the FOA had a fixed size: 7 x 7 pixels. The retina was 16 x 16
pixels. The contents and the selection networks instantiated all connections between the
retina and the FOA.
First, we presented a set of pixels arranged as a cross placed in the lower part of the retina
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(a)

394.5 399.4 404.3 405.3 406.9 407.3 410.6 413.3

420.2 420.2 425.1 427.8 428.4 430.8 439.6 453.1

455.1 456.3 464.5 469.6 497.1 498.2 508.2 551.0

Figure 6: (a) Examples of stimuli covering a random arrangement of pixels within a
central 7 x 7 area of SAIM’s retina. The numbers denote the time taken for convergence
to be reached within the FOA.

(see Figure 5). Activation was then mapped across network iterations until the threshold
in the FOA was surpassed. This happened to take 497 iterations. More important,
the example shows that activation that is not at the center of the retina is nevertheless
mapped into the center of the FOA, due to the constraints of proximity, uniqueness and
so forth that characterise interactions within the selection and contents networks. The
same held irrespective of where the stimulus was in the field. Attention can fix on an
object irrespective of the object’s retina location. In addition, Figure 5 illustrates that
activation in the FOA begins at the center of gravity of the shape, and then gradually
spreads out. This ’spread of attention’ is again brought about by proximity constraints
in the model, since there is most neighborhood support for pixels at the center of gravity
of shapes.
Second, we examined the rate of convergence of activation in the FOA when we presented
the model with 32 randomly chosen ’patterns’ (random pixel arrrangements within a
7 x 7 area on the retina)(see Figure 6a for the full set of patterns and for the times to
convergence in the FOA). RTs to attend to the patterns differed, and did so in a systematic
fashion4. To understand how these RT differences arose, we analysed the patterns for:
(i) the number of pixels present (the mass); (ii) the Gaussian mass (the sum of pixels
weighted by a Gaussian function so that pixels at the centre of the function are weighted
most strongly, with a standard deviation set to 6); (iii) a ’textured’ Gaussian mass (the
texture measure reflected the number of white-to-white pixel transitions present across
both horizonal and vertical axes, normalised by the number of pixels; this value was high
when the pixels are part of a homogeneous area5). In Figure 6b we present the RTs (in
network iterations) as a function of each measure for each pattern (the mass, the Gaussian
mass and the textured Gaussian mass). It is clear that each measure can account for a
significant amount of variance, with the Gaussian mass measure accounting for more than

4This set of simulations further illustrates the stability of the model across variations in the stimuli.
5The ’textured gmass’ measure, given in Figure 6, was based on the Gaussian mass x (7 x the nor-

malised texture measure).
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Figure 6: (b) (d) represent correlations between the time taken for convergence within
the FOA and measures relating to the mass of the shape. The highest correlation is with
the textured Gaussian mass measure (see the text for details).
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(a)

Xcog = 3 Ycog = 3 Xcog = 3 Ycog = 3

Xcog = 3 Ycog = 3 Xcog = 4 Ycog = 3

(b)

Histogram of CoG’s in the FOA

with ”distractor”

0 0 0 0 0
0 0 4 1 0
0 1 20 2 0
0 2 5 0 0
0 0 0 0 0

without ”distractor”

0 0 0 0 0
0 0 4 0 0
0 1 22 3 0
0 1 3 1 0
0 0 0 0 0

Figure 7: Examples of stimuli being placed with their center of gravity at or adjacent to
the central pixel within the FOA. The top sections and bottom left section in (a) illus-
trate patterns positioned with their center of gravity at the center of the FOA (Xcog=3,
Ycog=3); the bottom right section in (a) indicates how selected patterns can shift their
position within the FOA if there are other stimuli also in the field (now Xcog=4, Ycog=3).
(b) Provides 2 frequency accounts of where the center of gravities of shapes are placed
within the FOA, according to whether a distractor is present or absent.

the measure of the number of pixels, and the textured Gaussian mass measure providing
the best fit. These analyses illustrate that RTs in the model are influenced by something
like the Gaussian mass of the pattern (perhaps reflecting also the textural homogeneity of
pixels). The higher the textured Gaussian mass measure, the faster the RT. This bottom-
up bias in SAIM is caused by the proximity constraints that affect interactions within
the selection network. There is maximal support for patterns whose pixels are close and
that have no gaps between them; this holds across a broad set of stimuli. The textured
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Stimulus: FOA:

t=290 t=420 t=470 t=520 t=540

RTfoa = 477

Figure 8: Competition for selection within the bottom-up version of SAIM. Here activation
in the FOA is shown when two stimuli are present in the visual field. Note that the time
to attend to the + (in the FOA) is increased relative to when the + is presented alone
(Figure 5).

Gaussian mass (textured gmass) determines the bottom-up ’salience’ of a stimulus for the
model.
In a third study of bottom-up constraints on the model, we presented SAIM with 2 random
patterns where each pattern was based on a random arrangement of pixels within a 7 x
7 area on the retina. Performance was compared with when only a single random pattern
was presented (defined by covering only a 7 x 7 area). Examples of the single and double
patterns are shown in Figure 7. When the patterns had different ’textured gmass’ values,
the pattern that was mapped through to the FOA first was the one with the largest
textured gmass (see also Figure 8). When a single random pattern was presented, its
center of gravity tended to be mapped through to the center of the FOA (pixel 3,3 in
the FOA), due to the proximity constraints within the selection network. However, this
could be affected by the second pattern. For example, in Figure 7a, lower panel right,
the center of gravity of the selected figure was placed at pixel 4,3 in the FOA when 2
patterns were present, but pixel 3,3 when only the selected figure occurred (Figure 7a,
lower panel left). This small ’shift effect’ indicates that an unselected stimulus can have
some influence on how attention is fixed upon a selected item, due to spreading activation
within the selection network. Figure 7b presents the numbers of occasions (across 35
different sets of single and double patterns) where the center of gravity of the pattern
with the larger textured gmass was sited at particular pixels in the FOA (thus the center
value in the matrix represents the center of the FOA). Note that the center of gravity
of the pattern tended to be placed at the center of the FOA on slightly fewer occasions
when a ’distractor’ pattern was present (the center of gravity was mapped to pixel 3,3 in
the FOA on 20/35 occasions), than when it was absent (when the center of gravity was
mapped into pixel 3,3 on 22/35 occasions).6

Figure 7 illustrates that there is competition for selection in SAIM when two rather than
one stimulus is presented; only one of the two presented stimuli is selected at one time, in
the FOA. This same point is illustrated in Figure 8, where we present the results from a
simulation using stimuli that can be easily labelled (a + and a 2, rather than the random
patterns shown in Figures 6 and 7; we will use these figures as examples throughout
the rest of the paper). The stimulus 2 (Figure 8) has a textured gmass value of 14.42.
The textured gmass value for the + is 19.12. Each stimulus covers a 7 x 7 pixel area
on the retina. Given these two stimuli, SAIM maps the + into the FOA. The + wins
the competition for selection because it has a higher bottom-up salience (a higher gmass
value) than the 2. In this simulation, the + took 477 iterations for convergence to take

6In all cases SAIM selected an area of field 7 x 7 pixels in area, due to the fixed size of the FOA.
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place within the FOA.
One thing to note from this last simulation is the contrast in the time for convergence to
take place within the FOA when two rather than one stimulus is present, even when the
stimulus is the first to be selected amongst multiple shapes (e.g., contrast the convergence
time of 477 iterations when the 2 accompanied the + with the time of 470 iterations
when the cross appeared alone; Figure 5). There is a small processing cost when there
is competition for selection even for the stimulus that is preferred for selection (and so
selected first). Several researchers have also shown that the mere presence of other items
in the visual field can delay human identification of a target. This ’filtering cost’ occurs
even when the stimuli are presented at separate spatial locations and when distractor
stimuli have little resemblance to targets (Eriksen & Hoffman 1972, Treisman et al. 1983),
making it unlikely that effects are due to a cost in switching attention on occasions when
distractors are selected prior to targets. SAIM produces a filtering cost effect due to
competition within its selection network when several items appear simultaneously in the
field, and even for the target selected first. This characteristic of SAIM is robust across
wide variations in the stimuli used (e.g., see Figures 9, 10, Figure 11(c) compared with
Figure 9(a) for further examples).

Discussion
These simulations illustrate several points:

1. SAIM can map activity into its FOA in a purely bottom- up manner, determined
by the constraints operating within the selection network. It does this in a selective
manner. Stimuli that are spatially separated can be parsed into two separate objects
based on proximity relations between pixels in the image, and there is competition
between the objects for selection so that only one is selected at a time.

2. Representations formed within the FOA tend to be based around the center of
gravity of the shapes. SAIM maintains that our attention tends to be focused at
the center of gravity of objects and that the attended representations used for sub-
sequent object recognition will use a reference frame fixed on this location. Here
SAIM is supported by psychological evidence. For instance, eye movements to visual
stimuli tend to fall at the center of gravity of shapes (Findlay 1982, McGowan et al.
1998, Ottes et al. 1985), and even when free vision is allowed subjects tend to bisect
lines (and presumably fix attention) according to the relative center of mass of the
stimulus (Shuren et al. 1997). Also studies of shape perception show that axis-based
descriptions are frequently used both to identify and to match shapes across succes-
sive presentations (Humphreys (1983), Humphreys & Quinlan (1987); see also Marr
(1982)). Since SAIM’s attention tends to be fixed at the center of mass of an object,
there is a natural basis for recognition to operate using descriptions centered on this
point, which is typically coincident with where a principal axis would be defined.
Furthermore, Hirsch & Mjolsness (1992) showed that displacement discrimination
in random dot patterns can be best described by a model which uses a globally-
computer center of mass parameter, and Morgan et al. (1990) have argued that
many visual illusions (including the Müller-Lyer) are based on deviations produced
by global center-of-mass computations performed by early vision.

3. For SAIM not all of an object is attended simultaneously; there is a time course
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to focusing attention in which the center of a shape is attended first (the pixels
at the center of the FOA gaining the initial strongest activations levels) and then
attention spreads outwards (see Figure 5). In contrast to the spread of activation
in the selection network, the coding of shape at earlier stages of the model operates
in parallel across an object, and indeed such parallel coding is necessary in order
that attention can be drawn to the center of gravity of a shape. Although we have
noted above psychological evidence indicating that attention is biased to the center
of gravity of shapes, we know of no data on the detailed time course of this process,
though SAIM predicts that attention should spread across objects, from the center
of gravity outwards. The same result occurs in SAIM when the top-down compo-
nent of the model is added (e.g., see Figure 9 for an illustrative example).

It is tempting to relate this last aspect of the model, in which the center of a shape
is attended before the whole, to psychological studies on wholistic effects on pattern
recognition, in which identification responses to global shapes can be faster than
those to their constituent parts (Navon 1977). However this would be misleading.
Though attention in SAIM is initially focused at the center of a shape, other parts
can be rapidly attended following on from this, and all of the parts within the FOA
will activate stored templates in the full version of the model. There will be an
early advantage for local parts mapped into the center of the FOA, but this will
be balanced against activation of templates by a greater number of pixels within
the global shape. Whichever template is activated most will depend on the relative
balance between the local and global sources of information. This is illustrated by
the simulation of wholistic perception, presented in Study 4, where we introduce
templates into the model.

4. Bottom-up mapping of activation into the FOA acts to ’group’ pixels together even
though they are spatially separated (see Figures 6 and 7). Bottom-up grouping in
SAIM is based solely on proximity relationships in the image. If pixels are suffi-
ciently close, they will be mapped into the FOA as part of the same object. More
sophisticated bottom-up grouping processes undoubtedly play a role in human vi-
sual attention (collinearity, closure etc.; see Donnelly et al. (1991); Elder & Zucker
(1993); Rensink & Enns (1995), for evidence), but these are not simulated within
this version of the model. Within the full version of the model, when top- down
as well as bottom-up constraints operate, then grouping can also be imposed by
top-down knowledge.

5. A good measure for the speed of convergence of activity in the FOA is not the total
mass of the shapes (e.g., the summed number of pixels) but rather the textured
gmass, as defined above. Since the gmass increases as the distance between pixels
in a shape reduces, it is sensitive to proximity grouping in shapes. Reaction times
(RTs) to stimuli should reflect the ease of grouping based on proximity. It should
be noted, however, that we are not predicting that, in humans, a + would be
identified faster than a number 2 because it has a higher textured gmass value.
RTs in humans depend on many factors, including the exact physical properties
of the stimuli, their relative familiarity, and forms of grouping not implemented in
SAIM (e.g., collinearity of edges; see (4) above). What is critical is our simulation
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of a qualitative difference between the times to attend to the two shapes which
differ in their textured gmass, and the + and 2 stimuli simply illustrate this for
the model. The simulations with a wider set of random pattern (Figures 6 and 7)
illustrate that both the faster RTs and the selection bias for shapes with a higher
textured gmass holds across a range of stimuli. We predict that textured gmass is
an important factor in determining both the speed with which attention is deployed
and its positional focus.

2.1.2 Study 2. Accessing stored knowledge and attention- switching: Bottom-
up biases

Study 1 used a version of SAIM which had no knowledge network in order to illustrate
the nature of bottom-up biases on selection in the model. A network without the ability
to match stimuli to stored knowledge might be used to simulate certain tasks performed
with humans (e.g., simple target detection) but it cannot be applied to studies using
identification measures, for which access to stored knowledge is necessary. In addition,
the bottom-up version of the model has no procedure for attention switching. From Study
2 on, then, we use a version of SAIM which incorporates stored knowledge, and uses this
knowledge to modulate selection. The full version of SAIM also has the ability to switch
attention from a first to a second stimulus in the field. In this version of the model, we
can also test whether the processing cost in selecting two vs. one stimulus is particularly
large for the stimulus selected second. This result in humans has been reported by Duncan
(1980), amongst others.

Method
The bottom-up parameters in SAIM remained constant. The parameters for the top-down
components making up the knowledge network are given in the Appendix. The knowledge
network was also used to introduce into SAIM the capacity to scan attention (see also
Olshausen et al. 1993). Template units were given an identification threshold (.9), after
which identification was considered to have taken place. Once this threshold was passed,
inhibition was applied (see above).
The stimuli presented to the model were a + and a 2, which we observed previously to
show asymmetric effects in selection when presented together in the field (Figure 8, Study
1; there was a bottom-up bias favouring the +). In Study 2 we examined the identification
of these stimuli both when presented in isolation and when presented together. When the
stimuli were presented together we asked whether attention could be switched from the
object that was ’better’ in a bottom-up sense (the +) to the object that was worse (the
2). The initial activation values of the two templates, and their thresholds, were set to
be equal so that any differences between the stimuli would reflect bottom-up factors.

Results and discussion
Figure 9 (a) and (b) illustrates the time course of activation in the template units when
the 2 and the + stimuli were presented alone. There remained a bias to favour the +,
with the number of iterations required for the + to reach threshold at the FOA and tem-
plate levels being 438 and 610 iterations respectively. This compares with 543 and 765
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Figure 9: Performance of the full version of SAIM, with templates for the stimuli + and 2.
(a) + presented alone; (b) 2 presented alone; (c) 2 and + presented together. Activation
is depicted in the FOA and in the template units. RTtemp is the time taken for the
identification threshold to be passed, at the template level (in network iterations). When
the 2 and + are presented simultaneously, SAIM selects first the + and then the 2, with
the ’winner’ being the stimulus with the higher textured gmass measure.
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+ (salient stimulus) two (less salient stimulus)
FOA Template FOA Template

Cost
(two items - single items)

34 60 744 745

Table 1: Filtering and switching costs when 2 rather than 1 target is in the visual field,
in SAIM (measured in network iterations)

iterations for the 27.
Figure 9c demonstrates the consequences of presenting both the + and the 2 together in
the field. The + is selected and identified first, but following this, selection and identifi-
cation proceeds for the less good stimulus, the 2. SAIM switches attention from the first
to the second item. As in the pure bottom-up version of the model, there are general
consequences of having two items in the visual field: the time for attention to converge
and for identification to take place is increased even for the better of the two stimuli. This
effect is somewhat larger here than we observed in the purely bottom-up version of the
model, due to slightly different convergence properties within the larger network. However
this simply emphasises the robustness of the effect. Table 1 gives the mean increases, in
network iterations. For the less good of the two stimuli (the 2), the costs of identifying
two relative to one item were increased even more than was the case for the preferred item
(the +). Such an increased cost for the stimulus selected second in a two-item display
has been found in studies of target selection under brief presentation conditions (Duncan
1980). SAIM captures this ’switching cost’ effect on the poorer item.
Study 2 demonstrates a bias in selection in SAIM: given multiple items in the field, and
equal top-down biases for the stimuli (see Study 3 below), SAIM tends to select first the
object that is ’better’ in the sense of having higher priority for the selection network: here,
the object with the largest textured gmass (the + before the 2). In the version without
the knowledge network and attention switching (Study 1), this simply leads to the +
being attended first. In the full version of SAIM (Study 2), the + is both attended and
identified first, and then attention is switched to the 2. This bias for the ’better’ object
is increased when the good and less good objects are presented together relative to when
each is presented alone (in the single object baseline conditions). When the good and less
good stimuli are presented briefly together SAIM predicts that the less good stimulus is
less likely to be identified, even when it can be identified when presented in isolation, since
the time to select the second stimulus will be limited by the exposure duration. Evidence
for such a bias was reported by Farah et al. (1991) (see also Gorea & Sagi (2000)). Farah
et al. attempted to simulate extinction effects in patients with brain lesions by exposing
normal subjects to stimuli in one visual field that were degraded. They found that the
degraded stimulus could be identified as well as a brighter one when each was shown
in isolation; however there was a bias to identify only the brighter one when the bright

7Note that there is a general slowing of RTs when the knowledge network is added, relative to when
a smaller model is used (without the knowledge network; e.g., Study 2). This slowing is due to the
additional knowledge layer added to the network, which requires that activation be transmitted through
a further set of units and that there is further competition to be resolved. With multi-item displays, the
benefit is that it enables stored knowledge to be used for segmentation in instances where bottom-up
segmentation is difficult; Study 6 here provides an example of this.
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and dim stimuli appeared simultaneously. This is analogous to spatial biases in selection
found in patients showing spatial extinction, as we go on to demonstrate by simulation
(see Study 6). As noted in the Introduction, competitive biases of this form, favouring
the better of two stimuli, are also suggested by a number of current general accounts of
selection in humans, including the integrated competition account suggested by Duncan
and colleagues (Desimone & Duncan 1995, Duncan 1998, Duncan et al. 1997)8.
One other point to note here concerns the magnitude of the filtering and selection costs
(for the + and the 2 respectively, in Studies 1 and 2), relative to differences in the time
to attend to and identify the stimuli themselves. For example, the difference in the time
to attend to the + and the 2 (judged by RTfoa) was 105 iterations, whilst the filtering
cost for the + was 34 iterations (the selection cost for the 2 was somewhat larger: 744
iterations; Figure 9). However it is difficult to make any conclusions from this, since few
psychological studies have compared the magnitude of filtering and selection costs with
the time taken to fix attention upon a whole stimuli. For now we simply note that, for
SAIM, differences in the time to attend to particular stimuli can be comparable to costs
in processing stimuli under attentionally demanding conditions.

2.1.3 Study 3 Accessing stored knowledge and attention-switching: Top-
down biases

In Study 3 we showed that SAIM is sensitive to bottom-up biases in visual selection,
tending to select the better of two objects, where ’better’ is defined in terms of bottom-
up factors such as the magnitude of the textured gmass. It is also possible to bias selection
in the model in a top-down manner. The effects of top-down pre-activation were examined
in two ways in Study 3. First, we set the initial value of the template units to favour
the 2 over the + (that is, this value was set against the usual bottom-up bias in SAIM,
which favours the + out of the + and the 2; Figure 8). For this, the template unit for
the 2 was pre-set to 0.51. Subsequently, we introduced another form of top-down bias by
changing the weights on the connections into the 2 template, so that these were larger
than the weights into the template for the +. The first form of bias may be thought
equivalent to a short-term priming effect, in which there is pre-activation for the stored
representations of a particular item. The second form of bias may reflect the influence
of longer-term learning, which can lead to more familiar objects having larger weights to
their stored representations. For example, in a Hebbian learning process, the weights on
the connections into and out of the 2 template would come to be larger than those into
and out of the + template, if a 2 is presented more often to the model than a +.
Performance of the model is presented in Figure 10 (10 a shows performance with a pre-
activated template; 10 b shows performance with an increased weight setting).
It is clear that, in contrast to when no top-down bias is set, the 2 now wins the competition
for selection, and the template unit for the 2 is activated to a greater degree than that for
the +. The same result holds for both form of top- down bias (pre-activating a template
and increasing the weight connections to and from the template). This demonstrates that

8One result that does not appear consistent with this prediction was reported by Jonides & Yantis
(1988). They presented a bright stimulus amongst dim ones, either of which could constitute a target
letter. Both the bright and the dim target letters were equally affected by the number of dim stimuli in
the field. If the bright stimulus was always selected first, it should show smaller effects of the number
of dim items present. However it is not clear that the differences in intensity were sufficient to induce a
competitive bias in this study.
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bottom-up biases within the model can be modulated by top-down expectations. There
is a cost to this, however, which is that it is takes a relatively long time for convergence
to be achieved within the network. Compare Figures 9c and 10. In 9c, data are presented
from the full version of the model without a top-down bias favouring the poorer of the two
stimuli (the 2). If we measure the times taken to map the item first selected (the +) into
the FOA and to activate the associated template, we find increases of 33 and 60 iterations
when the + & 2 appear together relative to when the + is presented alone (Figure 9(a)).
This is the 2-item cost (see also Study 2). Now consider when the top-down activation is
set against the bottom-up bias (Study 3). Performance in the two-item condition (Figures
10 (a) and (b)) needs to be compared with that in the one-item condition when only the
2 is presented, with the network biased towards the 2 (by pre-activation of its template
or by growth of its weight connections). Data for the 2 alone, for this biased version of
the model, are presented in Figures 10 (c) (with a pre-activated template) and 10 (d)
(with an increase in the weightings). When the template was pre-activated, the 2-item
costs were 97 and 335 iterations at the FOA and template levels respectively. When the
weights were increased, the 2-item costs were 15 and 120 iterations respectively. In both
cases, there remained a selection cost when 2 rather than 1 item was present.
Now to some degree, this prolongation of RTs in the model is a function of the strength
of the top-down activation; if top-down activation were even stronger, RTs would be
faster to select the object that is less perceptually good but more familiar. On the
other hand, there is a balance to be struck in introducing top-down modulation within
SAIM’s WTA selection network, since small top-down increments can have large effects
on performance. Stronger biases can lead to an insensitivity to bottom-up stimulation
(even to ’hallucinatory’ behavior, when no stimulus is present), which is not appropriate.
The bias introduced here was sufficient to affect selection without dominating it (i.e.,
producing false misidentifications when a single stimulus was presented) For example, the
+ presented alone, or even with another stimulus that does not resemble the 2, was still
recognized even when the template for the 2 was pre-activated. This is illustrated in
Figure 11, where we show the performance of the model when it is biased towards a 2 (by
pre-activating the 2’s threshold) but no 2 stimulus is presented. In Figure 11(a), a + is
presented along with a diagonal line, which should not strongly activate the template for
the 2. The + is attended and identified. However, when the + is accompanied by a bracket
stimulus, which has pixels in common with the 2, then SAIM can select the distractor
mistakenly as a 2, even when another identifiable stimulus (having its own template)
is present - the + (Figure 11b). Figure 11(c) demonstrates that this does not happen
when the representation for the 2 is not primed (for the simulations shown in Figure
11(c), the templates for the 2 and + had the same value). Schvaneveldt & McDonald
(1981) showed that humans too make false alarms to distractors when primed to identify
a particular target and when presented with degraded distractors that overlap with the
expected target (e.g., making a false alarm to the nonword MOHTER when primed with
FATHER). We have explored the level of overlap in SAIM required to produce a false
identification when the model is primed to expect a particular target, and, under the
parameter conditions used for our simulations, an overlap of about 55% of the pixels
could trigger a trial on which a false alarm response is made (when the stimulus itself
has no corresponding template). Although this has not been explored systematically in
psychological studies, we suggest that it is not too dissimilar to the results reported by
Schvaneveldt & McDonald (1981); e.g., where 4/6 letters are shared in the same position
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between the stimulus MOHTER and the primed representation MOTHER). There is
clearly a balance between making the recognition system sensitive to momentary context
and running the risk of false misidentifications occurring. The most general point we
conclude is that, whilst top-down biases can overcome bottom-up stimulus preferences,
there will remain some cost to selection of the primed item (relative to when it appears
alone). Top-down biases that are even stronger can reduce such a cost, then the false-
alarm rate will rise.
Interestingly surprisingly few studies have been conducted into the effects of effects of
what might be construed as top- down biases on visual selection itself. One result that
is consistent with SAIM was reported by Shiffrin & Schneider (1977), (Experiment 4d).
Shiffrin & Schneider assessed the selection of a target learned through a varied mapping
scheme against a distractor that had previously been learned as a target using a consistent
mapping scheme. Consistent mapping should lead to representations having larger weights
into and out of their stored representations, as captured by the simulations shown in
Figure 10(b). Shiffrin & Schneider found that detection of the target learned via varied
mapping was disrupted by the simultaneous presentation at an irrelevant location of a
former target learned under consistent mapping conditions. This cost was worse than
when the irrelevant location contained a former target learned through varied mapping.
Selection was biased by the effects of prior learning (see also Irwin et al. (2000), for
converging empirical evidence).
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Figure 10: Effects of top-down bias on selection. In (a) and (b), a 2 and a + are presented
simultaneously, with the model biased to favor the 2. In both instances, the 2 now wins
the competition for selection over the +. In (c) and (d), a 2 was presented alone to the
model. In (a) and (c) there was pre- activation of the template for the 2. In (b) and (d)
the weights were increased on connections into and out of the 2 template.
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Figure 11: Performance of the top-down version of the model when biased towards a
stimulus not presented (the 2). (a) gives performance with a + and another stimulus
dissimilar to a 2 (a diagonal line); (b) gives performance with a + and a stimulus similar
to a 2 (]) - note that the template for the 2 is activated; (c) shows performance with
the same stimuli as in (b) but without a top-down bias for a 2, when the cross wins the
competition for selection.
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2.2 Study 4. Wholistic perception
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Figure 12: Global precedence in SAIM. (a) illustrates performance when a template does
not exist for the whole, when a part is identified; (b) shows that a ’whole’ compound
stimulus is detected in preference to a component parts, when templates exist for both
the whole and the part. RTs are faster for the response to the whole than to the part.

As we have already noted, there is evidence in human perceptual report for participants
being able to attend to and identify more easily whole shapes then the constituent features.
This was shown by Navon (1977) in some now classic studies using compound shapes
(large letters made up of small letters). Navon found that RTs were overall faster to
global relative to local letters, and that the identities of the global letters interfered with
responses to local letters when the letters had incompatible responses. Many other studies
have demonstrated similar effects, though the precise pattern of results depends on factros
such as the density of the local letters (Martin 1979), the spatial uncertainty about the
target (Grice et al. 1983), and the form of grouping between the elements comprising the
compound letters (Han et al. 1999, Kimchi 1994). On the other hand, the time course
of mapping visual information into SAIM’s FOA suggests some advantage for local over
global properties of stimuli (with the caveat discussed in Study 1). In Study 4 we tested
whether there really was a local advantage when an identification task was used and
the stimuli comprised either: visual elements that could each be identified as a distinct
target at a local level (with no template for the more global whole), or the elements could
activate a template for the perceptual whole as well as for each part (with a template for
the global whole and for each part).

Method
The full network was used, without any top-down priming of particular templates. Two
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tasks were employed: select a global target and select a local target. To examine selection
of the global target, two templates were employed: one for a whole, compound stimulus

made up of unconnected local elements (the Global ) and one for a part of the same stimulus

( Local – see Figure 12). Each template was coded so that its center of gravity would fall
at the center of the FOA. In this case, identification of the perceptual whole based
on activation of the template for the whole stimulus was pitched against identification
of a part of the same object based on activation of the template for the part. To
foreshadow the results, we found that the whole was selected prior to the part. To
compare identification time for the part, when SAIM was only ’set’ for this element, we
re-ran the simulation but introduced a ’dummy’ global template (a global X). The global
X template has minimal pixels in common with the stimulus presented, but it equates the
networks used to simulate the local and global tasks in terms of the number of templates
present. RTs in SAIM are influenced by the number of templates held in memory (see
footnote 7), so all comparative simulations need to be based on the networks having the
same numbers of templates.

Results and Discussion
Figure 12a plots the activation in the FOA and the template units as convergence is
achieved for the compound stimulus when the ’part’ and X templates were used. Figure
12b gives the activation to the same stimulus when the X template was replaced with one
for the whole, compound stimulus.
Figure 12b shows that, when a template exists for the global shape, it is this shape that
wins the competition for selection and identification (even though a template for the local
part also exists). There is global precedence. Under these circumstances identification of
the part can only take place by inhibition of the template for the global shape following its
identification. Figure 12a demonstrates that SAIM is capable of identifying a part, when
the template for the part does not compete with one for the whole. However, identification
times remain slow, when compared to those for an identifiable global shape (part (b)).
It is also of interest to note that when the part is identified (Figure 12a), other sections of
the cross are mapped into the FOA. This is because of proximity effects between the pixels
in the compound shape, which act in a bottom-up manner against the top-down influence
to attend to just the part. Again there is an interaction between bottom-up and top-down
factors in determining performance. In human observers similar interactions can be seen.
For instance, we have only limited ability to attend to parts of stimuli when they form
strong bottom-up groups with surrounding elements (e.g. Rensink & Enns 1995). Also
the magnitude of global precedence effects in letter identification tasks increases when
local letters group based on proximity (Han et al. 1999).

2.3 Study 5: Cueing

2.3.1 (i) Spatial cueing

As discussed in the Introduction, one of the classic pieces of evidence that has been taken
to indicate that visual selection in humans is spatially mediated is the spatial cueing effect:
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Figure 13: Spatial cueing in SAIM. (a) Illustrates the parameters governing the decay of
activation from the cue and the rise in activation for the target. (b) Depicts activation
within the FOA at different intervals following the onset of a valid (top) or invalid spatial
cue (bottom). (c) Gives the time for convergence to be reached in the FOA as a function
of whether a valid, neutral or invalid cue was presented.
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RTs to detect a target are faster when it falls at the same location as a preceding spatial
cue (the valid cueing condition) relative to when the cue falls at a different spatial location
(the invalid cueing conditionPosner (1980)). This result has typically been interpreted in
terms of a spotlight analogy of attention; processing is speeded because the cue directs
the spotlight of attention to the location of a target in an internal spatial representation.
Other evidence suggests that different modes of cueing attention can be distinguished.
Peripheral visual cues seem to affect performance in a relatively automatic way, over a
short time interval (’exogenous’ cueing). RTs to targets falling at the same locations as
such cues are faster than RTs to targets falling at uncued locations, even when the cue
is not predictive of the target’s location across trials (cf. Müller & Rabbit 1989). Cues
can also exert influences over longer time intervals if they are predictive of targets, and
even if they only provide symbolic information about the target’s location (e.g., if the cue
is a central arrow pointing to the location of a target but not appearing at that actual
location; ’endogenous’ cueing). The effects of exogenous cues are difficult to prevent and
(for example) can be unaffected by adding secondary task loads to performance (Jonides
1981). Endogenous cues are not effective if unpredictive of target locations across trials,
and are affected by adding secondary loads to tasks. In these simulations we attempt to
model exogenous cueing effects on target detection.

Method
The cue was a square of 5x5 pixels and the target a cross with arm sizes of 7 pixels hori-
zontally and 7 pixels vertically. Cueing was modelled by presenting the cue on one side of
the visual field for a short duration (1 iteration). This was sufficient to allow the cue to
generate activation within the FOA. Subsequently, the target cross was presented, centred
either at the cued location or at a location on the opposite side of the field, beginning at
iteration 400, and this remained in the field until activation converged in the FOA. There
was also a neutral cue condition, in which 2 cues were presented simultaneously at each
of the two possible target locations (Müller & Rabbit 1989, e.g.). Performance was tested
using both the bottom-up version of SAIM (without the knowledge network) and the full
version (with the knowledge network and with a template for the target stimulus). The
parameters for the bottom-up components of the model were kept constant across the
two test situations. In all previous simulations we examined SAIM’s responses to indi-
vidual stimuli presented in a single time step. Here, however, SAIM received two stimuli
consecutively. To model performance under these new conditions, we assumed that rep-
resentations in the FOA, once activated, would decay over time. This may correspond to
something like the decay of an iconic representation of the cue (cf. Coltheart 1983)9. The
decay parameter for the cue, and the activation parameter for the target, are illustrated
in Figure 13a.

Results and Discussion
In Figure 13b we illustrate the growth in activation in the FOA and the template units
in the full version of the model, and Figure 13c gives the times (in network iterations) for

9The energy functions used for the original version of SAIM were not designed to work with dy-
namically changing stimuli, but assumed instead that the input was unchanging. Introducing a decay
parameter after a stimulus has appeared provides a way to approximate a dynamic change within the
model, ensuring that there is stable evolution of the energy function. The decay parameter has no effect
on the performance of SAIM in any of the other simulations we present, where static stimuli are presented.
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SAIM to identify the target in the valid, neutral and invalid trials (here performance is
shown following a left side cue only, with a left and right side target). SAIM manifests
a cueing effect, with RTs on valid trials being faster than those on invalid trials, and
with RTs on neutral trials falling in-between. These effects are found across a range of
values for the decay parameter, provided the target is presented prior to activation from
the cue having delayed back to baseline. Essentially the same pattern of results occurs
in a pure-bottom up version of the model, consistent with the effects being due to the
exogenous properties of the cue.
SAIM manifests an effect of spatial cueing because excitatory connections within the
selection network maintain their activity even after disappearance of the cue, due to
the self-sustaining properties of activation in competitive-co- operative networks (Amari
1982). In the valid condition there is sustained activity at the location of the target; this
boosts the target’s activation and produces faster mapping of the target into the FOA. In
the invalid condition, activation from the target, at one location, must compete with the
sustained activity from the cue, slowing the time taken to translate the target into the
FOA. This effect will arise whenever targets follow shortly after cues presented at a given
location, and hence it should be an automatic consequence of cueing. Note, however, that
the cueing effect is not simply due to sensory summation of activation from the target
and cue in a common location. There was a benefit for valid trials relative to neutral
trials, even though the cue appeared at the location of the target in both instances. In
the neutral condition, though, any sensory effects of the cue were modulated to some
degree by competition between the two cues presented.
The cueing effect examined in SAIM mimics a situation in which the cue is presented
briefly and ’automatically’ affects target processing so-called ’exogenous’ cueing. As
SAIM would predict, the effect of this exogenous cue can decrease if too long a delay is
introduced between the cue and the onset of the target (Cheal et al. 1994, Nakayama &
Mackleben 1989). In addition to this, humans can employ a form of ’endongenous’ cueing,
based on intentional allocation to the location of a target (Cheal et al. 1994). This is not
implemented in this version of the model.
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2.3.2 (ii) Cueing objects and cueing space
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Figure 14: Simulation of space-based and object-based effects of spatial cueing in SAIM.
(a) The stimuli and presentation times (the cue was a small square and the target an
arrow). (b) The parameters governing the decay and rise of activation for the stimuli in
the simulation.

Egly et al. (1994) first reported effects on target detection of not only cueing the spatial
position of where a target would appear but also which object it would appear in. Subjects
were presented with two rectangular boxes at the start of a trial. A cue was presented by
highlighting one part of a box, and this was followed by a target spot which appeared at
either the same location (same object, same position), at a different location but within
the same object (same object, different position), or at a different location and also in the
other object (different object, different position - here the distance between the target and
cue was matched to that between the target and cue in the same object, different position
condition). Subjects made a simple RT response to the onset of the target. Egly et al.
found that RTs were fastest in the same object, same position condition, followed by the
same object, different position condition and then the different object, different position
condition. These results are difficult to accommodate in a pure space-based model of
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Figure 15: (a) Activation within the FOA and template units when the cue and target
(i) fell within the same object at the same location, (ii) fell within the same object but
at different locations, or (iii) fell in different objects and at different locations.
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Figure 15: (b) The times taken for the target template to reach threshold as a function
of whether the cue and target fell at the same or different locations, within the same or
different objects.

visual attention, since the ’spotlight’ of attention should be the same distance from the
target in the two different position conditions, irrespective of whether the cue and target
are in same and different objects. However, the effects of the spatial relations between
cues and targets within the cued object also suggest that spatial proximity within objects
is important. The cued part of the prime object seemed to be attended more than the
uncued part. A model such as SAIM, which combines spatial and object-based effects
in selection, may be able to capture such effects better than either pure space- or pure
object-based models.
To simulate the results of Egly et al., we presented a ’prime’ display composed of two
vertical line elements (similar to the rectangles used by Egly et al). One of the two
lines was then cued, by presenting a small square which fell at the far tip of the critical
line. Subsequently, a vertex shape was exposed, which created an arrow target with
one of the two primer lines. Crucially, the vertex could fall at the cued location (same
object, same location), it could fall at the opposite end of the cued line (same object,
different location), or it could fall on the other line (different object, different location).
The separation between the cue and the target vertex was matched in the same object,
different location and the different object, different location conditions (5 pixels, in each
case; Figure 14a). We measured the time taken for SAIM to detect the vertex in the
FOA (equivalent to Egly et al.’s measure of simple RT to the target dot). In the version
presented here, we also included a template which consisted of an error pointing up or
down, corresponding to the line plus a vertex at either its top or bottom. This is akin
to human subjects coming to store a template for the rectangle plus the target dot in
each of the probed location, in Egly et al.. However, essentially similar results occur in
the bottom-up version of SAIM without the template. Using the template here simply
ensures that the network architecture is held constant across different simulations. We
assessed whether the time for the target to be mapped into the FOA was affected by
whether it fell within the cued shape or not.

Method
Initially two lines, each of 1 pixel across and 7 pixels down, were presented. Next a 3 x 3
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pixel square appeared at the end of one of the primer lines. After this, the target vertex
appeared. The activation and decay parameters for the model were the same as those
used for the study of space-based cueing (above). The cue was presented for 210 iterations
and it was followed immediately by the target. The timing and activity parameters are
shown in Figure 14b 10. The full version of SAIM was used, with templates for an upright
and an upside down arrow.

Results and Discussion
Figure 15a illustrates the dynamics of activation within the FOA, and the accumulation
of activation in the template units, when the cue and target appeared: (i) in the same
object at the same location, (ii) in the same object at a different location, and (iii) in a
different object, at a different location. Figure 15b gives the times for the templates to
each threshold, yielding the different identification responses.
Detection (and identification) times were fastest when the target appeared both in the
same object and at the same location; they were slower when the target fell in the same
object but at a different location, and they were slower again when the target fell the same
distance away but in an uncued object (different object, different location). Performance
of the model is affected by the distance separating a target from the original center of
attention and by whether the target falls within the originally attended object; there
are both space and object-based characteristics of attention. The object-based effect on
selection here occurs because activation is propagated from the cued part of the object
to other parts, by dint of their spatial proximity. This conveys an advantage for a target
subsequently presented on the cued object relative to one presented on the uncued object
(which does not benefit from spreading activation within the selection network).

2.3.3 (iii) Position of cueing within an object

Another study reporting effects of object properties on the allocation of visual attention
was published by Pavlovskaya et al. (1997). They examined the accuracy of detecting
briefly presented, masked letter-like targets, which were preceded by visual cues. The
cues fell at the center of mass of the target or at a position within the shape but displaced
from the center of mass. They found that cueing at the center of mass of the shapes
led to better performance than cueing away from the center of mass. This result is
consistent with attention normally being drawn to the location of the center mass in
order to discriminate the shape.
To test for similar effects in SAIM, we presented a spatial cue to the model and followed
it by a target shape. The cue fell at the center of mass of the target or it fell within the
target but away from the center of mass. We ask whether performance is affected by the
position of the cue relative to the center of mass.

Method
The cue was a 3 x 3 square. The target was a 7 x 7 pixel cross. Performance was measured
in terms of the time taken to identify the target. The cue fell so that its center of mass
fell between +/- 3 pixels away from the center of mass of the target shape along the

10Note that, in Figure 14b, the activation function for the cue starts at 0, whilst it started at 1 in
Figure 13a. This difference arose because, for the data in Figure 15b, the cue was presented against a
background already containing two primer stimuli, producing a longer rise-time in its activation.
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Figure 16: (a) The parameters governing decay and rises in activation for the cue and
target in the simulations of Pavlovskaya et al. (1997). (b) RTs in SAIM as a function of
the spatial relations between the cue and the center of textured gmass in the target. The
darker the shading, the faster the RT. At position 0 the location of the cue and the center
of textured gmass of the shape coincide.

horizontal meridian (to simulate the data of Pavlovskaya et al. (1997)). The parameters
were the same as for the studies of spatial cueing using the full version of the model.

Results and Discussion
In Figure 16 we illustrate the RT for the target to be identified, according to the spatial
relations between the location of the textured gmass of the cue and the location of the
textured gmass of the target shape along the horizontal axis. At point 0 the centers of the
textured gmass of each shape are perfectly aligned; at point 3 the center of the textured
gmass for the cue fell 3 pixels to the right of the center of the textured gmass of the
target. The darker the shading, the faster the RT. The figure shows that RTs varied as
a function of the spacing between the centers of textured gmass of the shapes, with fast
RTs occurring when the locations of the textured gmasses were aligned. This mimics
the results reported by Pavlovskaya et al., that human RTs vary according to the spatial
distance between a cue and the center of mass of a shape.

2.3.4 (iv) Inhibition of return (IOR)

When there are multiple items in the field, SAIM needs to switch attention so that each
item is selected and identified in turn. It does this by inhibiting locations in the location
map and in the selection network associated with the previously attended region of field
(to prevent attention returning to areas of field already sampled). In addition there is
inhibition of the template for the target (an effect that is not retinally-specific). When
attention has shifted from a cued object in one location, there should thus be a cost to
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Figure 17: Inhibition of return in SAIM (with a long cue- target separation of 800 itera-
tions). (a) Parameters governing the decay and rise in activation for the cue and target.
(b) RTs for convergence to be reached in the FOA according to whether valid or invalid
spatial cues have appeared, in either the same or in different objects.

identification when a target is subsequently presented at the same location or when the
same object is presented but at a different location. There should be both space-based
and object-based ’inhibition of return’ (cf. Gibson & Egeth (1994); Maylor (1985); Posner
& Cohen (1984); Tipper et al. (1991)).
We examined these properties of SAIM in a simulation using the full version of the model
in which the cue and target used in our earlier study of spatial cueing were presented at
a longer SOA, with the cue being exposed until it was identified (i.e., until thresholds
were reached in both the FOA and the template units). The full model allowed attention-
shifting to take place. Following identification of the cue, there was subsequent inhibition
to enable attention to be shifted to other items in the field.
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Method
The target was a +, 7 pixels across by 7 pixels high. On trials with the ’same object’
cue, the + also appeared as the cue. On ’different object’ cue trials, the cue was a 5 x
5 pixel square (the target was the same, on ’same’ and on ’different object’ trials). The
cue was focused either at the center of the target (when the target was subsequently
presented) or at an equivalent position on the opposite side of the visual field (on valid
and invalid trials respectively). The cue appeared for 700 iterations prior to the target
being presented. This was longer than the cue time used produce the ’early’ facilitation
effect (400 iterations, see (i) above), and it was sufficient for the cue to be attended
and identified. There were 4 conditions. Cue and target were presented in the same or in
opposite positions, and they could be the same or different objects. The decay parameters
for the templates are illustrated in Figure 17a.

Results and Discussion
The times for template thresholds to be passed are given in Figure 17b. RTs were pro-
longed on valid (same position) relative to invalid (different position) trials, and when the
cue and target were the same relative to when they were different objects (though targets
were the same in both instances). These effects of ’spatial’ and object-based’ IOR were
roughly additive. This matches the human data. For example, Tipper et al. (1991) used
a cueing procedure in which one of four boxes was illuminated; the boxes then moved
to new positions. RTs were slowed when targets were presented in the previously cued
box even after it had moved into a new position (object-based IOR; see also Gibson &
Egeth (1994); Tipper et al. (1999)). RTs were also slowed when targets appeared in a new
box that had moved into the previously cued position (location-based IOR). RTs were
slowed even more when the same object was cued in the same location, with the effects
combining in an additive fashion.
Now, as currently implemented, SAIM has no way of sustaining activation within the
selection network once a stimulus disappears from the visual field. This means that IOR
can only be produced by using a long cue duration (to ensure that the cue is identified).
In contrast to this, most studies of IOR in humans have used short cue durations and
varied the interval between the cue and the target (Maylor 1985, Posner & Cohen 1984);
effects with long cue durations have proved controversial due to possible masking effects
from cues on targets (e.g., Tassinari et al. (1994, 1998); see Lupianez & Weaver (1998)).
However in studies with short cue durations, the exposures are still sufficient to enable
cues to be identified, perhaps because such stimuli are typically unmasked and so may
benefit from iconic persistence. Provided identification takes place, and some (iconic)
representation of the location of the cue remains, then SAIM generates IOR.

2.3.5 Discussion of Study 5

SAIM is sensitive to the effects of spatial cueing on its performance. With short cue-target
intervals RTs are faster when cues and targets appear in the same spatial positions than
when they appear in different spatial positions. However, when cues are presented long
enough to be attended and identified, there is both spatial and object-based IOR in order
to allow the model to select new items. In each respect, SAIM captures psychological
data on visual cueing effects. In addition to these aspects of spatial selection, SAIM
manifests effects of object properties on selection. When part of an object is cued, there
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is facilitation for targets presented within the same object relative to targets presented
outside the object but the same distance from the attended part. Also cueing effects on
attention to a target shape are increased if the cues fall at the center of textured gmass
of the shape. These results match data reported by Egly et al. (1994) and Pavlovskaya
et al. (1997). In addition there is object as well as spatial IOR, due to inhibition of both
previously attended locations and objects. The ability of SAIM to simulate object effects
on selection extends other models that have been used to simulate cueing but without
incorporating an object processing module (e.g. Cohen et al. 1994).

2.4 Study 6

In the final study in this section, we examined whether SAIM would be able to select
one of two spatially overlapping stimuli. Some of the strongest evidence for object-based
selection in vision comes from studies using spatially overlapping stimuli. Using such
stimuli it has been demonstrated that subjects are able to select several attributes from
one object with little or no cost, while there is a cost for selecting attributes from both of
the objects present (e.g. Behrmann et al. 1998, Duncan 1984). Since this cost in selection
occurs even when stimuli fall in the same spatial region, it is difficult to explain in a
purely spatial model (e.g., if all attributes are selected together if they fall within the
same spatial window). Here we ask whether SAIM too can be biased to select one but
not not both of two overlapping shapes.

Method
SAIM was given two templates, one for a horizontal ’handle’ and one for a vertical line.
We then presented these two stimuli together on SAIM’s retina, so that they overlapped
within a 7 x 7 region. Note that SAIM normally selects all the pixels falling within such an
area (see Study 1). To provide a ’set’ for the model to select one or other of the overlapping
stimuli, we pre-activated one of the two templates (using the same parameters as those
used in Study 3). We assessed whether SAIM then selected all the pixels associated with
one pattern but not the other (even though the other pattern fell within the attended
spatial region).

Results and Discussion
Figure 18(a) presents the results when SAIM was biased towards the ’handle’ target, and
Figure 18(b) the results when the bias was towards the vertical line target. In each case,
SAIM selected the object whose template was pre-activated and only pixels conforming
to that objects remained active within the FOA; pixels corresponding to the other object
present within the attended spatial region were not activated. Thus, even though SAIM
operates using a window of spatial attention (the FOA), it is capable of ’pure’ object-
based selection. This occurs in the model because of object-based (top-down) feedback
to the selection network, which favors pixels belonging to the pre-set target over pixels
belonging to other stimuli in the same spatial region. We have obtained similar effects
with a variety of stimuli.
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Figure 18: SAIM’s ability to select one of a pair of spatially overlapping stimuli. (a)
SAIM is pre-set to select the handle stimuli; (b) SAIM is pre-set to select the vertical line
target.

2.5 Conclusion

We have simulated some of the ’classic’ results supporting arguments for spatial selection
in human visual attention, such as the effects of spatial cueing on target detection. SAIM
captures such effects by incorporating a spatially limited FOA which determines which
retinal input is mapped through to recognition units that respond to stimuli from all areas
of visual field. The assignment of the FOA to a particular area of field can be biased by
spatial cueing. However, SAIM also shows effects of object-coding as a natural part of the
dynamics of the mapping process (e.g., from the effects of proximity within the selection
network) and due to its interactive nature (in which activation within the knowledge
network is fed back to the selection network). Hence the model is capable of selecting
pixels belonging to a single object and rejecting pixels belonging to another object within
the same spatial reigon. The general properties of the model, such as its tendency to
align attention to the center of shapes and the consequences of biasing competition for
selection (from either bottom-up or top-down factors) also make it attractive as a model
of selection, linking to a broad body of psychological data (cf. Duncan 1998).
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3 Modelling pathological attention and selection

As we pointed out in the Introduction to this paper, neuropsychological studies provide
powerful constraints on models of human visual selection. In particular, studies of patients
with unilateral visual neglect suggest that both spatial and object-based factors influence
selection, and that forms of dissociation can occur in which patients seem to express
separate forms of neglect according to the spatial positions of separate objects in the
field or according to the positions of parts within objects. A full account of human visual
selection needs to accommodate these examples of pathology as well as patterns of normal
performance, and, as we will review, some forms of neglect remain difficult for competitor
accounts of visual selection. Accordingly, we attempted to simulate effects of brain lesions
within SAIM.

3.1 Neurobiological status of SAIM

When introducing their dynamic switching circuit model, Olshausen et al. (1993) mo-
tivated their arguments by relating the structure of the model to the neural circuits
mediating human selective visual attention. In particular, they argued that the contents
network (using our term) relates to the architecture of the pattern or ’what system in
the ventral cortex. This network is concerned with taking the contents of the retina and
passing them forward, through the FOA, to high level cells concern with the recognition
of stored objects (e.g., associated with the inferotemporal cortex in primates; Tanaka
(1993). The selection network, they suggested, is distributed between the pulvinar and
the parietal cortex, and forms part of a ’where system, concerned with coding the spatial
locations of stimuli and with using this information for action. They argued that the
pulvinar was a likely candidate for such a network because of the high levels of connec-
tivity between this structure and various regions of the cortex, as would be required in
a true neural implementation of the selection network. It can also be argued that the
posterior parietal cortex provides a spatial map of objects that are of potential interest
for attention (Gottlieb et al. 1998) and, furthermore, it is strongly implicated in spatial
transforms that map retinal information into other frames of reference for both object
recognition and action (e.g. Duhamel et al. 1992, Zipser & Andersen 1988). In SAIM the
location map denotes the positions of objects of attentional interest, and we implement a
mechanism for spatial transformations between different reference frames in the selection
network. Thus aspects of the selection network and the location map in SAIM can be
linked to posterior parietal cortex.
Given these general relations between parts of the model and anatomical structures in the
brain, we may look to mimic effects of particular brain lesions by simulating lesions within
related parts of the model. Disorders such as unilateral neglect and simultanagnosia are
associated with lesions to the posterior parietal cortex in humans. To simulate these
disorders, we contrasted the effects of ’damage to the different portions of the selection
network.

3.2 Lesioning SAIM

There have now been numerous studies on the effects of simulated lesions on the behav-
ior of connectionist models (see Ellis & Humphreys 1999, McLeod et al. 1998, Olson &
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Figure 19: Illustration of ’vertical and ’horizontal lesioning in SAIM. The vertical lesion
affects units in the selection network receiving input from one side of the visual field. The
horizontal lesion affects units mapping into one side of the FOA.

Humphreys 1997, for reviews). Lesions have been simulated by reducing the weights on
connections, eliminating connections, adding noise into the activation functions or some
combination of these manipulations, and it is by no means clear exactly which procedure
may be best for mimicking the effects of neural damage in humans. In the main, lesions
were introduced to SAIM by damaging ’intrinsic connections to units within the selection
network, which may be analogous to damaging connections from the pulvinar to the pos-
terior parietal cortex or to damaging connections between neurons within the posterior
parietal cortex; damage to these regions is associated with forms of visual neglect (Gaffan
& Hornak 1997, Heilman & Valenstein 1979). There were two different main patterns
of lesioning, which respectively affected (i) connections between units in the selection
network that received input from one part of the visual field (we term this a ’vertical
lesion), and (ii) connections between units that transmitted their output into one side
of the FOA (we term this a ’horizontal lesion). Figure 20 illustrates the two patterns
(here, for simplicity, lesioning is shown as a step function; however, in the simulations it
was graded linearly across space; see below). The two patterns of lesion were examined
because, within the architecture of the model, they are likely to generate different forms
of spatial disorder. A ’pure vertical lesion, solely affecting units in the selection network
receiving input from one side of the field, may produce a deficit linked to the position in
the visual field where a stimulus appears. In a severe form this could mimic a field cut
(though there is no effect on early coding of visual information and, indeed, activation in
the contents network would be the same as in the unlesioned case; however the lesion in
the selection network will prevent this activation in the contents network being translated
into the FOA). With a milder lesion, it is possible that a stimulus presented in the affected
part of the field can be detected under optimal circumstances but not when other items
are present, competing for selection. This may lead to a form of extinction, separating
the deficit from a simple field cut. We demonstrate this in Study 7. In contrast, a ’pure
horizontal lesion may produce deficits solely affecting representations on one side of the
FOA, and may be unaffected by the visual field where a stimulus falls; there may be a
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form of ’object- centred neglect. Combinations of ’vertical and ’horizontal lesions may
produce variations in the relative contributions of visual field and object-based coding
in neglect. As we shall demonstrate, this has interesting implications for understanding
contrasting forms of visual neglect.
As with other attempts to model unilateral neglect (e.g. Mozer et al. 1997, Driver &
Pouget 2000), the lesions that were given to SAIM were graded across space (not all-or-
none, as in Figure 19). Such graded lesions can be conceptualized in various ways. For
instance, there may some proportion of cells within each hemisphere that have receptive
fields for both rather than one side of space, with ipsilateral locations close to fixation
being more likely to be represented bilaterally than ipsilateral locations far from fixation.
Indeed Corbetta et al. (1995), in a PET study of visual attention shifts, showed that
cells in the right parietal lobe were activated by shifts in the right as well as in the left
visual field, though activation of the left parietal lobe by ipsilateral (left) field stimuli was
somewhat weaker. Consequently damage to the right parietal lobe may affect not only
the left visual field but also areas in the right visual field to some degree. Also left field
areas around fixation may be supported by cells within the left hemisphere, as well as by
cells in the right hemisphere. The net result of right hemisphere damage may be a graded
impairment across space, with any deficit being worse for stimuli presented on the far
left. Neuropsychological data also suggest that there is a graded deficit. For instance, in
clinical tests of neglect such as star cancellation, performance can often decrease in rather
a uniform manner with proportionally more items being cancelled as a function of each
relative shift from the ipsi- to the contralesional side (Marshall & Halligan 1990).

3.3 Study 7: Effect of ’vertical lesioning’: Visual extinction
without neglect.

Our first study began by examining the effect of a ’vertical’ lesion on the model. As noted
above, after a severe ’vertical’ lesion SAIM is unable to respond to anything presented on
the lesioned side of the visual field. However, a milder lesion may allow a stimulus to be
responded to when presented alone, though performance may suffer when competitors are
introduced into the visual field. In the present simulation, the lesion was relatively mild
and graded across the visual field (see Figure 20a for illustration). The lesion also affected
the mapping into all parts of the FOA (and so it extended fully along the y dimension
of the matrix of selection network units shown in Figure 20a), so that there was no bias
favouring attention to one side of an object. With this lesion, if an object is selected,
there should not be a tendency to attend to just part of it. We tested performance using
the + and 2 stimuli, for which there is a differential bottom-up bias in the model: without
damage, SAIM will select the + rather than the 2 stimulus, due to the + having a higher
textured gmass (see Study 1). Initially the + was presented in isolation at various locations
on the retina, starting from the far left and moving to the far right. Subsequently, in the
2-item condition, the + appeared within the left (lesioned) region of visual field and the
2 appeared in the right (unlesioned) region. To demonstrate effects purely of bottom- up
constraints, we used the version of the model without the knowledge network, and traced
the activation of the stimuli within the FOA; subsequently the knowledge network was
added and essentially similar results occurred The parameters for the lesioning were as
shown in the Appendix. The vertical lesion involved a smooth (graded) transition across
the visual field.
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Figure 20: Example of the graded lesions used in the simulations. (a) depicts a vertical
lesion affecting one side of the visual field more than the other; (b) depicts a combined
vertical + horizontal lesion; here the lesion differentially affects units on one side of the
field more than units on the other, and it differentially affects units on one side of the
FOA (bottom rows in the selection network map into units on the left of the FOA).

Figure 21 illustrates the mapping into the FOA after the vertical lesion for the + presented
in isolation in the field. In this figure, we present the activation within the FOA for each
position that the + was presented in the visual field, from left to right. With the lesion
chosen, the stimulus was mapped successfully into the center of the FOA irrespective of
its position in the visual field. There was however evidence of a cost in the time taken
for the + to be attended, with RTs being considerably slower to left than to right-side
stimuli. This result occurred with both the bottom-up only version of the model (Figure
21a) and with the full version of the network, with templates added. SAIM remained able
to identify stimuli presented on the left, though identification times were slowed (Figure
21b).
Figure 22 illustrates performance when the + was presented concurrently with a 2, and the
+ was in a lesioned area of field (on the left). The stimuli were presented for 850 iterations
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Figure 21: Effects of a vertical lesion on SAIM’s ability to map visual information into
the FOA, shown as a function of the position of the stimulus in the visual field (from far
left to far right). (a) the bottom-up version of SAIM (without knowledge); (b) the full
version (with knowledge). FOA: gives the detection threshold within the FOA; T gives
the identification threshold within the template units.
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Figure 22: Effect of vertical lesioning when the normally preferred stimulus (the +) is
presented in the impaired area of field (on the left).
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and then turned off, to simulate the effects of short duration on human performance, when
extinction effects can be observed. In its lesioned state, the model shows a bias to select
the 2 in preference to the + (though in the unlesioned state the bias was in the opposite
direction; Study 1). In addition, under the limited exposure duration only the item in the
’good’ field is detected and the item in the impaired field is ’extinguished’. Following this,
activation continued to be cycled through the model, but this was no longer supported by
bottom-up input. The cycling of activation around the model moves the template units
from their initialisation value (0) into a state of equilibrium in which they are activated
at a 0.5 level (the equilibrium level for all units participating in the energy minimization
process)11. At this level of activation there is no evidence to support the presence of any
particular stimulus, so that the + is not identified. Note that the time taken to identify
the + in isolation was less than the 850 network iterations used here, even for the lesioned
version of the model, for nearly all stimulus locations (Figure 21b). SAIM can identify
a single item in its lesioned field under durations that would produce extinction when a
second item is presented on the unlesioned side.
Another interesting aspect of the network’s performance is as follows. The demonstration
of extinction depends on a balance between the bias in selection due to the lesion and
biases in selection due to the stimuli. For instance, if the 2 were smaller, and the spatial
bias from the lesion no greater, then the + may still win the competition into the FOA.
However, the time for convergence to take place in the FOA would be more protracted
than when the model is not lesioned, as indicated by the slowed convergence times relative
to when the + is presented in isolation. It now follows that, under reduced exposure
conditions the item in the impaired field might be selected whilst the item in the intact field
is extinguished (if a short exposure is used, leaving insufficient time to switch attention
to the second new stimulus). For SAIM, this counter-intuitive result emerges from the
general slowing in the convergence of activation in the FOA after lesioning. Interestingly
there are now several reports in the neuropsychological literature demonstrating that
patients with right hemisphere damage can show abnormally poor report of right field
items when cued to select a left field item, under conditions of brief stimulus exposure
(Humphreys et al. 1996a). For SAIM this result is not an anomaly but rather an emergent
property of the general slowing of attentional convergence in SAIM after lesioning.

3.4 Study 8. Effects of combined ’vertical & horizontal lesion-
ing’: Field-dependent neglect

In Study 8, we examined what we will term a combined ’vertical and horizontal’ lesion.
The lesion used is presented in Figure 20b. For this lesion there was a graded ’vertical’
deficit affecting units in the selection network more on one side of the visual field than
the other (the x axis of the matrix in Figure 20b). However the lesion was not extended
across all units feeding into the FOA, rather it only affected units feeding into one side
of the FOA (so, in Figure 20b, the lesion progresses only half way up the y-axis, to affect
units on the left side of the FOA more than units on the right side). This produces a
form of ’horizontal’ lesioning, in which the competition to map into one side of the FOA
is unbalanced. The lesion values are given in the Appendix. SAIM was presented with

11This value of 0.5 would be attained here for templates corresponding to stimuli not even present in
the field, since it is generated simply by the internal dynamics of the network.
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Figure 23: Effect of combined vertical + horizontal lesioning. In (a) and (b) performs in
the field, from left to right. (a) the bottom-up version of the model; (b) the full version.
(c) depicts the selection preference for a 2 over a + (in the lesioned area of field), which
would result in extinction for the + under brief presentation conditions.

a single +, 7 x 7 pixels in size, at various locations on the retina. Subsequently it was
presented with a + in the lesioned part of the field along with a 2 in the unlesioned area,
to pit the biasing effects of the lesion against the biasing effects of stimulus salience (the
+ having a higher textured gmass than the 2).
With the combined vertical & horizontal lesion, there was some neglect of features on the
affected side of the stimuli when it fell in the left visual field. This is apparent in Figure
23a, where we again show activation in the FOA as a function of the field position of the
+. When the + was in the left field, none of the pixels in its left arm were transmitted
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into the FOA. However, as the object was moved from the impaired into the less affected
region of field, so neglect recovered. There is a form of field-dependent neglect. In addition
to this, there was some tendency to neglect the left most pixel in the cross even when
the stimulus was in the right visual field, when the bottom-up version of the model was
used (Figure 23a). In the full version of the model (Figure 23b), there was generally less
neglect (i.e., more pixels on the left of the stimulus were brought into the FOA) and, for
right-field stimuli, neglect was eliminated.
These results indicate:

1. the combined vertical and horizontal lesion produced more neglect than the vertical
lesion alone. For example, there was no neglect of the left pixels of the cross after the
vertical lesion, even for the bottom-up version of the model when the + appeared
in the right visual field (Figure 21); there was left neglect of a cross in the left field
with a combined vertical and horizontal lesion (especially in the bottom-up version
of the model; Figure 23a). This is interesting because, in terms of the number of
units damaged, the vertical lesion alone is more severe than the combined vertical
and horizontal lesion (see Figure 20), and the gradient of the lesion across the visual
field was the same in both instances. This illustrates that what is important in the
model is not the magnitude of the lesion, per se, but whether the lesion unbalances
competition for mapping information into the FOA. The combined vertical and
horizontal lesion unbalances this mapping, to favor one side of the FOA.

2. as illustrated by the example in (i) above, a horizontal lesion has some tendency to
introduce ’object- based’ neglect, affecting features on one side of the object even
when the object is in the less affected field (Figure 23a).

3. in the full version of the model, there can be recovery of affected information due
to top-down activation from templates (Figure 23b vs. Figure 23a).

We examine these last two factors further in Studies 9 (object-based neglect) and 10 (top-
down filling in).
In addition to this, we again tested the lesioned model when the + appeared in its lesioned
(left) field and the 2 in its intact field. As in Study 7, there was a bias in the lesioned
model to select the 2 rather than the +. Under conditions of reduced exposure duration
(under 800 iterations), there would again be a tendency for the + to be fully extinguished,
even though parts of the + can be detected when it is presented in isolation (cf. Figure
23c with Figure 23b). In further examples discussed below (and shown, e.g., in Figure 27),
we demonstrate that SAIM can simulate a form of extinction even with prolonged viewing
conditions when a combined vertical plus horizontal lesion has been imposed (when the
model becomes ’stuck’ on the object first selected). Thus extinction-type effects are not
necessarily contingent on the use of reduced exposures.

3.5 Study 9. Effect of ’horizontal’ lesioning: Object-based ne-
glect

3.5.1 (i) Neglect of single objects

Having shown that different combinations of ’vertical’ and ’horizontal’ lesioning produce
both ’pure’ extinction (Study 7) and field-dependent neglect (Study 8), in Study 9 we
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Figure 24: Effects of a horizontal lesion. (a) indicates the lesion used; (b) illustrates
object-based neglect within the FOA as the stimulus is moved from left-to-right across
the visual field.

examined the effects of a horizontal lesion alone. The lesion is illustrated in Figure 24a.
There was damage to units in the selection network that transmit activation through to
the left side of the FOA (along the y-axis of the matrix in Figure 24a). Unlike the cases
where a vertical lesion was introduced, there was now no gradient to the damage across
the visual field (x-axis, Figure 24a).
SAIM was presented with a 7 x 7 pixel +, which could appear at any of six positions in
the visual field (moving from left to right). The model was run both with and without
the knowledge network. The patterns of convergence achieved in the FOA, along with
the times to attend to and identify the +, are illustrated in Figure 24b.
Figure 24b shows that, across all the field positions, there was neglect of the left most
pixel in the cross, and the cross was in all cases mapped too far to the left of center of
the FOA. This also occurred when identification rather than detection was measured (in
the full network, Figure 24b bottom row). Here SAIM manifests a form of ’object-based’
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Figure 25: The effect of object structure on neglect following a horizontal lesion: the − >
is neglected more than the < −.

neglect, in which the left features of the object are neglected even when the stimulus falls
in the right visual field (cf. Young et al., 1991). Interestingly, the model also showed no
effect of field position on RT. It suggests that patients with ’pure’ object-based neglect
may respond with equal facility to stimuli in both fields.
We also evaluated SAIM’s performance with 2 other objects, using the bottom-up version
of the model: a left-facing arrow (<-) and a right-facing arrow (->). These stimuli were
chosen not because they have been used to any great degree in studies of neglect patients
but because, for the model, there is a contrast in the positions of elements relative to the
center of the textured gmasses of the shapes. The stimulus has more pixels to the left of
the center of its textured gmass than the . With a lesion affecting processing on the left of
the shapes, the will have more support for pixels falling on the neglected side relative to
the . There should be more neglect of the left-most pixels in the . By contrasting SAIM’s
performance with these shapes, we test whether neglect, as expressed by the model, is
sensitive to the position of elements relative to the center of the textured gmass of the
shapes. Effects on neglect of the positions of elements relative to the center of mass of
stimuli have been reported by Grabowecky et al. (1993) and by Pavlovskaya et al. (1997).
Right hemisphere lesioned patients show less neglect when there are larger numbers of
elements on the left of the shape.
The arrows each had 11 pixels. The same horizontal lesion was used again (Figure 24a),
and the stimulus was presented with its center of textured gmass at the center of the visual
field. The results, showing the pixels activated in the FOA, are depicted in Figure 25.
SAIM manifested different degrees of neglect with the different stimuli. The right-facing
arrow () was subject to most neglect; all of its bar section was omitted from the FOA. In
contrast the left facing arrow () was not neglected at all; its center of textured gmass was
mapped into the center of the FOA.
These contrasting effects with different shapes reveal an important aspect of SAIM’s
performance following lesioning; namely, the effect of lesioning is more complex than
simply producing a consistent bias against stimuli in one part of the field, or the parts
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Figure 26: Selection and switching attention in an unlesioned version of the model. First
the + is selected followed by the ]. (a) The unlesioned model. (b) The model after a left,
horizontal lesion; note that there is now left, object-based neglect for each stimulus.

on one side of an object. This is because computation of the center of the textured
gmass of a stimulus, and alignment within the FOA, depend on interactions within the
selection network which are determined by: the degree of spatial bias, the magnitude of
the textured gmass, the spatial spread of the shape, the proportions of the shape that
fall either side of the center of the textured gmass, and the location of the center of the
textured gmass relative to the spatial lesions. For example, here the has 5 pixels to the
left and 3 to the right of center; the has the opposite proportions. There is less neglect
for the after lesioning because there are increased numbers of pixels on the left relative
to the right of the center of the textured gmass of the shape, and this counter-acts the
reduced activation due to left-side lesioning. The is neglected more because the bottom-
up spatial bias from the stimulus combines with the spatial bias due to lesioning, which
favors pixels to the right of the center of the textured gmass of the shape. These results
mimic the effects found in neglect patients (see Grabowecky et al. 1993, Pavlovskaya et al.
1997).

3.5.2 (ii) Multiple objects: Sequential neglect

In a second assessment of the effects of horizontal lesions on SAIM’s behaviour, we exam-
ined performance when multiple stimuli were presented, when the model should normally
switch attention from one object to another. Studies of neglect patients using simple
drawings tasks (Gainotti et al. 1986, Marshall & Halligan 1994), and tasks requiring the
discrimination of features within shapes (Humphreys & Heinke 1998), have demonstrated
that forms of ’sequential neglect’ can occur - there is neglect of each object selected in
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a sequence. For instance, in drawing a patient may fail to include some details on the
left of one item, move onto the next item and then fail to include its left-side details too.
This can produce neglect of features on the left of objects that fall further into the right
(non- neglected) field than non-neglected features on the right side of an object. It is
not clear how well this result can be explained in other models of visual attention. For
instance, in the MORSEL model of attention and object recognition, attention operates
within a two-dimensional retinotopic map (Mozer 1991, Mozer & Sitton 1998). Neglect
can be modelled in terms of a graded lesion, affecting attentional activation differentially
from left-to-right across the map (e.g., with the lesion being more severe on the left).
Now within such a model, effects of within-object neglect can be mimicked if there are
graded lesions across the attentional network, so that there is always a bias for one side
of an object over another irrespective of the object’s position on the retina (Mozer et al.
1997, e.g. see). Competition between units in the attentional network will then ensure
that one part of the object gets privileged access to stored knowledge over the other. This
can simulate forms of object-based neglect in which there is neglect of left-side features in
objects presented within the right field. However, the same graded lesion that produces
this object-based effect would also lead to reduced activation of an object placed in the
left field, and indeed the activation of the right-side features of such an object may be
less than the activation of the left-side features of an object in the right field. Perception
of the left field object should be poor. This is because neglect of parts of an object are
intrinsically intertwined with neglect of parts of the visual field12. In contrast to this, in
SAIM neglect of parts of objects can be treated separately from neglect of parts of the
field. Consequently, as indicated below, SAIM demonstrates the same form of sequential
object- based neglect as human patients. This proves to be crucial in the simulations of
neglect within- and between-objects, presented in Study 11.
The lesioned version of SAIM was presented with 2 stimuli: a + and a bracket (]). The
bracket had 13 pixels like the +, but it had a lower textured gmass (15.80). When the
model was unlesioned, it first selected the + and then the ]; also each stimulus was fully
mapped into the FOA (Figure 26a). After the horizontal lesion had been imposed (as in
Figure 26a), SAIM attended sequentially to the + and then the ] as before, but for each
stimulus there was a shift in its position within the FOA, with the left most pixel for each
being neglected. This is shown in Figure 26b. SAIM shows sequential left-neglect of each
object selected. Left-neglect occurred for each object because the model has difficulty in
mapping input into the left side of the FOA, so that the right-side features play a more
dominant role in the mapping process. The object is consequently displaced in the FOA
and neglect occurs. This result matches data from human patients (Driver et al. 1992,
Gainotti et al. 1986, Humphreys & Heinke 1998). The contrast with MORSEL at least
in part reflects the fact that MORSEL uses a single view-dependent representation of at-
tended space. There is only a single locus for deficits of attention, which must be graded
across space to produce within-object neglect (irrespective of the positions of individual
objects in the field). The penalty is that the gradient will also affect multiple objects
according to their locations in the field. SAIM, however, creates a translation-invariant
representation in its FOA. Damage to the processes involved in mapping into one side
of the FOA produces a form of neglect that is specific to the features on one side of the
object irrespective of the object’s lateral position in the field and even when there is no

12Additional procedures that can be used to simulate object-based neglect in MORSEL are elaborated
in the General Discussion.
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Figure 27: Example of ’sticky’ attention and between-object neglect following a combined
vertical + horizontal lesion (affecting both the left visual field and the left side of the
FOA). The 2 in the less-lesioned field is selected in preference to the + in the more
lesioned field (though the bottom-up bias is the opposite). In addition, in this example
SAIM was unable to reject the stimulus first selected due to misalignment of the item
in the FOA with its template. There is ’sticky attention’ and neglect of a second object
falling on the affected side.

bias across the field.

3.5.3 (iii) Multiple objects: ’Sticky attention’ and impaired spatial memory

In the simulations using the + and the ], SAIM was able to inhibit the first stimulus
after selecting it (the +), and consequently the second item could then be selected (the
]; see Figure 26b). However in other simulations with the lesioned version of the model
we have found that rejection of first attended stimuli can sometimes be difficult. This
difficulty arises because stimuli can be spatially distorted when they are mapped into the
FOA (as here, where stimuli are shifted to the left of the center of the FOA). Even if
a template is activated to threshold, due to a partial match with the attended figure,
suppression based on active units in the selection network and on active pixels in the
target’s template may be inaccurate (note that active pixels in the template may not
coincide with activation mapped through to the FOA, due to the spatial distortion in
the FOA). On some occasions, this can lead to the model having difficulty in rejecting
an object first selected, so that it continues to be selected even after inhibition of the
selection network and the template. This is shown in Figure 27, where we examined the
effects of combined vertical and horizontal lesions on the full version of the model (note
that there is view-dependent neglect after this form of lesioning; see Study 8). In Figure
27 we illustrate performance when the 2 and the + from Study 2 were presented to the
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model. The 2 was on the right of the retina and the + on the left. Due to the spatial bias
from lesioning, the model selected the 2 prior to the +, overruling the standard bottom-
up bias (Study 1). However, due to the spatial shift of the 2 within the FOA, inhibition
applied after the 2 had been identified failed to suppress units associated with the 2. The
net result was that, when the display was re-sampled, the model remained vulnerable to
the spatial bias in selection, and the 2 was again selected. In other simulations using pure
’horizontal’ lesions to simulate object-dependent neglect we have found similar effects.
On such occasions, SAIM can appear to have severe problems in disengaging its attention
from the object first identified. Problems in attentional disengagement are associated
with damage to the parietal lobe (Posner et al. 1984), and they will be formally examined
in SAIM using the Posner cueing procedure (Study 13).
Interestingly, even under conditions of ’sticky attention’, SAIM does reject the item first
selected at a microgenetic level (the 2, in Figure 28), but it then re-selects it13. Clinically
this may be demonstrated when, on some occasions, patients select one item in search
and then re-sample it shortly afterwards without necessarily knowing that they have
previously selected the same location. This might be attributed to a problem in visual
working memory on the part of patients, who seem to have ’forgotten’ that they had
already selected a particular item or location (see Husain et al. (2001), for data showing
this and for an interpretation in terms of impaired spatial working memory in patients).
In SAIM, though, the same problem emerges not due to a spatial memory problem but to
the spatial distortion in selection which allows previously selected items still to compete
for attention. SAIM’s map of previously inhibited locations, which provides a working
memory for the model, is disrupted by the lesion.

3.5.4 (iv) Multiple objects: ’Between-object neglect’

The problem in re-engaging attention on one object also gives rise to one other inter-
esting result. This is that, in SAIM, there can be neglect of an object that falls on the
contralesional side of other objects present, a feature termed ’between-object’ neglect by
Humphreys & Riddoch (1994, 1995). In Figure 27, there is neglect of the + because it
falls to the contralesional side of the 2. Note that this is not simply neglect of one part
of the field since the + (or at least parts of it) can be selected from the same location
when presented alone (Figure 24). What is neglected is determined by parsing of the
field into objects and the selection of one object before another. The relations between
neglect within- and between-objects was examined further in Study 12, where we show
the independence of these phenomena by pitting the critical lesions against one another
to simulate patterns of performance in human patients, who, following bilateral brain
damage, have deficits affecting opposite sides of within- object and between-object spa-
tial representations (see Costello & Warrington 1987, Humphreys & Riddoch 1994, 1995,
Riddoch et al. 1995a).

13We term this a microgenetic level because it may be difficult to observe in a patient, as tests would
need to be administered in the small time window following the inhibition of the first template.
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3.6 Study 10. Template effects: Top-down filling in and prema-
ture acceptance

In Study 9, the templates the objects were activated to threshold even though parts of
objects were neglected within the FOA. From this it might be tempting to assume that
neglect may be less pronounced on tasks requiring stimulus identification (a response
derived through template activation) than on tasks sensitive to attention to the full spatial
extent of the stimulus. This also seems to be the case for other simulations of neglect, for
example in MORSEL. MORSEL uses a pull-out network to generate better identification
of words than nonwords, even when there is reduced activation of the left letters in
the stimuli due to impaired attention to that spatial region (Mozer & Behrmann 1990).
However, the recovery of the left letters for report does not lead to a spread of attention
to the affected region, since there are no top-down connections from the recognition
model to influence the attention system. In contrast to this, there is neuropsychological
evidence indicating that there is greater spread of attention in neglect patients when a
stimulus activates stored knowledge. For example, (Brunn & Farah 1991) found that
neglect patients were better able to report the colors of contralesional letters in words
than in nonwords, suggesting that stored knowledge modulates attention to the affected
side. Also simple detection tasks, not requiring stimulus identification, can be performed
more accurately when the parts to be detected make a known stimulus (e.g., Kumada &
Humphreys (2001), Ward et al. (1994); see the Introduction). These results are consistent
with stored knowledge having a direct, modulatory effect on attention. The architecture
of SAIM allows for such modulatory effects to occur, since activation from templates is
fed-back to bias the selection process. In Study 11 we test whether stored knowledge can
influence neglect and extinction in the model, not only in identification tasks but also in
terms of simple stimulus detection. We also assess whether template activation can be
shown to be sensitive to neglect. In these simulations, the full version of the model was
always used.

3.6.1 (i) Top-down filling in, in neglect

The effects of top-down knowledge on neglect were tested in two ways: (i) by varying
top-down modulation of the selection network by template units (is the degree of neglect
a function of the magnitude of any feedback?); and (ii) by varying whether stimuli jointly
activated a common template (so that stimuli could share top-down support). Perfor-
mance was assessed using a ’horizontal’ lesion only (see Figure 24a). First we compared
performance with the usual degree of top- down modulation (top-down activation set to
3.0), with performance when a higher top-down parameter value was employed (5.0). In
Figure 28a we present the data for the standard version of the model when presented
with a + stimulus. The model selects the + , but manifests neglect on the left most pixel
(which is not mapped into the FOA). The threshold for the + template shows a very pro-
longed time to reach threshold. The slow activation of the template here is partially due
to the neglect of the + in the FOA and partially due to competition from the template
for the 2; the 2 and the + share pixels and so generate competition at the template level.
In Figure 28b we present the results when top-down activation is increased. Two effects
are clearly apparent. One is that activation of the + template to threshold takes place
much more quickly. The second is that top-down feedback from the template helps to



Attention, spatial representations and visual neglect 60

(a) Standard top-down activation
Template activation:

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

time

ac
tiv

ity two
cross

Templates

two

cross

FOA:

t=320 t=380 t=440 t=500 t=580

Stimulus:

RTfoa = 480
RTtemp = 3360

(b) High top-down activation
Template activation:

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

time

ac
tiv

ity two
cross

Templates

two

cross

FOA:

t=680 t=780 t=880 t=980 t=1120

Stimulus:

RTfoa = 922
RTtemp = 1420

Figure 28: Effects of top-down ’filling-in’ after a horizontal lesion. (a) standard top-down
activation; (b) high top-down activation. Only a + is present in the field. There is neglect
of the left-most pixels of the cross with standard but not with high top-down activation.

correct for the spatial distortion in mapping activation from the + into the FOA, and
it ’fills in’ the neglected pixel on the far left of the shape. Strong top- down feedback
can help compensate for the effects of neglect and leads to a spread of attention to the
affected region.
Another way to show the same effect in SAIM is to contrast the processing of stimuli
which can be grouped by activating a common stored memory (template) and stimuli
which activate different templates. Items which share the same template will both re-
ceive feedback as they are processed and they will be mutually supportive for selection.
Items which activate different templates, however, will compete for selection. If there is
a spatial bias in the selection process (due to lesioning) then, in the latter case, there can
be neglect for the losing item. The same spatial bias need not produce neglect though,
if the items activate a common template, since top-down activation from the template
aids the recovery of the ’part’ on the affected side. This is illustrated in Figure 29. In
this simulation, SAIM was presented with an I and a T in its field, along with templates
either for both individual letters alone (Figure 29a) or for the individual letters plus also
the letters pair (i.e., a template for the word IT; Figure 29b). The model was run with
a ’left horizontal’ lesion. Quite different effects emerged according to whether the stimuli
activated a common template. When the stimuli activated a common template, both
items were mapped into the FOA. However, when the stimuli activated competing tem-
plates, the item contralesional to the lesion (the I) was neglected. SAIM first selected the
T, but there was some distortion in its mapping into the FOA. As a consequence of this
spatial distortion, the locations corresponding to the T were not inhibited, allowing it to
be selected again.
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Figure 29: Effects of grouping by stored knowledge on extinction. The stimulus comprises
2 letters: I and T. In (a) there are separate templates for each letter and neglect of the
left-most letter (the I). In (b) there is no neglect when a template for the word IT is
added, though lesioning is the same in both instances.

Our purpose in this study is not to evaluate which version of SAIM gives the best fit
to the human data, but rather to demonstrate the general case that top-down feedback
can modulate neglect in the model. Note that the biases on attention in SAIM can be
purely top-down, in the sense that operate differentially on stimuli that group equally in
a bottom-up manner (the I and the T in IT). In humans, the differential report of letter
colors with words and nonwords (Brunn & Farah 1991) may similarly reflect top-down
effects of stored knowledge, given that bottom-up cues should group letters equally well
in these two classes of stimuli.

3.6.2 (ii) Effects of premature acceptance

The prior study indicates that stored knowledge can help to ameliorate neglect and extinc-
tion. In this respect the model captures important effects present in human patients. For
patients, however, contact of parts of a stimulus with stored knowledge may occasionally
be detrimental. This occurs when partial information from the ’good’ side of a stimulus
matches a stored representation and causes what we will term ’premature acceptance’.
An example might be where a patient is given a relatively unfamiliar compound word such
as ’dingbat’. Activation of the template for ’bat’ may lead to premature acceptance and
identification of the stimulus as this word ’bat’ (see Sieroff et al., 1988). We examined this
issue by presenting SAIM with a + stimulus under conditions in which it had a template
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Figure 30: Effects of ’premature acceptance’. A cross is presented to a lesioned network
having templates for the part as well as the whole. The template for the part in the good
field wins the competition for selection.

corresponding to just the right part of the + (as well as having a template for the whole
stimulus). A horizontal lesion was introduced to produce neglect. Remember that there
is relatively little neglect of the + stimulus when there is a template for this stimulus and
no template corresponding to the ipsilesional part (Figure 23b). However, with a lesion
of the same severity there was quite severe neglect when there was a template for the
ipsilesional part as well as one for the whole stimulus; this is illustrated in Figure 30. In
this instance, stored knowledge of the part led to neglect of the whole.
The simulations shown in Study 10 demonstrate that activation of stored knowledge can
either help or hinder report of a whole stimulus. Whether there is top-down filling in or
premature acceptance of a part as the whole object takes will depend on a number of
factors. To begin with, it will depend on the existence and relative strength of any stored
representations for both the part and the object - as the simulations with the IT stimulus
illustrated, a representation for the whole object can override biases to select the part.
Performance also varies as a function of the bottom-up information in the stimulus (see
Study 9, with the stimulus; Figure 25). Though this variance in SAIM’s performance
might be worrying at first sight, the fact of the matter is that human patients can show
the same degree of variance or more when presented with subtly different stimuli. What
SAIM does is to provide an abstract metric that we can use to try and classify human
performance, based on factors such as: the familiarity of the overall stimulus, the strength
of bottom-up grouping between the parts of the stimulus, whether the ipsilesional parts
can be identified as an object in their own right, and the number of parts falling on the
ipsi- or contralesional side relative to the center of textured gmass (Figure 25). These
factors can be manipulated systematically in studies of neglect patients, to test the model.
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on opposite sides.
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Figure 32: Simulation of within-object and between-object neglect on opposite sides,
within a single network. (a) between-object neglect; there is a preference for selecting the
2 over the + when a lesion affects units receiving input from the right part of the visual
field. (b) within-object neglect; when the cross is selected, there is neglect of the left-most
pixels due to a lesion affecting the mapping into the left side of the FOA.

3.7 Study 11: Neglect within- and between-objects

In the Introduction we described results suggesting that contrasting patterns of neglect
can be found in different patients; for example, some patients seem to show neglect pri-
marily within the representation of a single object (Humphreys & Heinke 1998, Tipper
& Behrmann 1996, Young et al. 1992), whilst others show neglect between separate ob-
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jects without necessarily neglecting the parts within objects (Humphreys & Heinke 1998).
These two patterns can be demonstrated using the same tests across different patients,
indicating that they arise from dissociable impairments (Humphreys & Heinke 1998).
The two types of deficit have been described as respectively within-object and between-
object neglect. Whilst the term within-object neglect is relatively self-explanatory, the
term between-object neglect needs a brief explanation. Patients showing between- object
neglect will omit objects presented to the left of another object. It is not necessarily
visual-field dependent however, since a single object in the left field may be discriminated
(Humphreys & Heinke 1998). Neglect is contingent on the presence of multiple objects,
and neglect is demonstrated in terms of a bias away from the contralesional objects in
such sets.
Within many accounts of neglect, such a pattern of dissociable impairments is difficult
to account for. Take again the MORSEL model (e.g. Mozer 1991, Mozer et al. 1997),
in which object-based neglect can be simulated by introducing a graded lesion across its
retinally-coded ’attentional field’ (see above). To avoid neglect between objects, there
would need to be a relatively shallow gradient to any lesion. However we might then
expect all the parts of any identified object to be recovered too. Similarly a lesion that
produces neglect of one of two separate objects is also likely to produce a gradient within
an attended object, leading to neglect within- as well as between-objects. Particularly
problematic is the finding that, following bilateral lesions, there can be both within- and
between- object neglect, but for opposite sides of space (Costello & Warrington 1987,
Cubelli et al. 1991, Humphreys & Riddoch 1994, 1995). How could opposite gradient
effects be manifest within a single ’attentional field’?
These two results, of (i) between-object neglect with minimal neglect within objects, and
(ii) position within object overriding effects of position within field, in within- object ne-
glect, are produced by SAIM. For example, in the example shown in Figure 27 (Study
9), a spatial shift in the position of the object within the FOA leads to the object not
being adequately inhibited once selection has taken place: attention remains ’stuck’ on
the object selected first. Nevertheless, all the parts of the selected (right field) object
are attended. Thus the model selects the object in the unlesioned field and then has
difficulty in selecting the second, contralesional object; there is neglect between objects.
In contrast, in the example shown in Figure 26b, there is consecutive neglect of the fea-
tures in both the left and the right-side objects, with the features on the right of the
left-side objects being detected whilst there is neglect of the features on the left of the
right-side object. There is within-object neglect, where position-in-object is more impor-
tant than position-in-field. These different patterns of neglect can arise in SAIM because
the selection network not only plays the role of selecting one from the multiple objects
present, but it also acts to transform stimuli from a retinal to an object-dependent co-
ordinate system. Lesions to the selection network can affect retinally-dependent mapping
(the ’vertical’ lesions) or object-dependent mapping (the ’horizontal’ lesions), in which
case different patterns of disturbance emerge. A mild horizontal lesion, combined with a
vertical lesion, can produce neglect between-objects; a more severe horizontal lesion pro-
duces neglect within-objects. SAIM can account for double dissociations between patients
within within-object and between-object neglect (Humphreys & Heinke 1998).
SAIM can also accommodate patterns of dissociation within single patients, since there
can be two opposite lesion gradients, at different loci, to produce the two forms of ne-
glect. This provides a particularly strong verification of SAIM’s combined approach both
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to visual selection and to translation invariant recognition. To illustrate this, we admin-
istered two lesions to the model: a vertical lesion modulated the effects of inputs into the
selection network, more severely on the right than the left; a horizontal lesion modulated
outputs from the selection network into the FOA, more severely on the left than the right
(see Figure 31). These two lesions were chosen to capture the pattern of brain damage in
a patient JR, reported by Humphreys & Riddoch (1994, 1995). JR had a left hemisphere
lesion leading to neglect of the right side of multi-object displays, and a right hemisphere
lesion leading to neglect of the left side of single objects.
Figure 32 shows performance of the model when it was presented with a + in its right field
and a 2 in its left field. When lesioned the normal selection bias for the + was reversed:
the 2 was selected prior to the +. If exposure times are limited, if the patient uses a too
lax search criterion (failing to scan all the objects present), or if there are problems in
inhibiting objects first selected (Figure 27) The likelihood of attention becoming ’stuck’
will depend on the properties of the object, just as some objects showing more neglect
than others (Study 9 (i)). The more an object is displaced within the FOA, the greater
the likelihood of poor disengagement. The 2 used in this simulation is relatively robust to
such displacements, but allows us to examine processing of the + when it is subsequently
selected (Figure 27)14, this bias will lead to neglect of objects falling to the right of the
object first selected. In contrast, when only the + was present, there was neglect of the
left-most pixels (Figure 32b). Left neglect arose within this object because of the damage
to the process mapping from the selection network to one side of the FOA. There is a
selection bias favoring the left-most of two separate objects, along with a separate bias fa-
voring the right parts within individual objects. Under appropriate circumstances, there
will be both between-object and within-object neglect, but on opposite sides of space,
within a single network subject to two lesions.
We might ask, however, whether it is neurally plausible to have 2 different forms of lesion-
ing of SAIM’s selection network. It is tempting to suggest that units in SAIM’s selection
network receiving input from the left visual field are in the right hemisphere and those re-
ceiving input from the right field are in the left hemisphere. Neglect of the left visual field
would then be associated with right hemisphere damage, and neglect of the right field with
left hemisphere damage. However, this would mean that units in each hemisphere feed
into both sides of the FOA (e.g., via the rows of the matrices shown in Figure 20). It then
becomes difficult to attribute patterns of within- and between-object neglect on opposite
sides of space to separate lesions in the two hemispheres (e.g., right hemisphere damage
producing left neglect within-objects and left hemisphere damage producing right neglect
between objects; see Humphreys & Riddoch (1994, 1995)). On this view, within-object
neglect should not be associated with a lesion to a particular hemisphere. Consistent
with this, Caramazza & Hillis (1990) have reported apparent object-based neglect fol-
lowing left hemisphere damage, whilst others have reported effects after right hemisphere
lesions (Humphreys & Heinke 1998, Young et al. 1992). Another way to conceptualise
the lesion effects in SAIM might be in terms of damage to connections into or out of the
selection network. For instance, all connections into the left side of the FOA may reside in
the right hemisphere and may be selectively damaged by a right hemisphere lesion. This

14The likelihood of attention becoming ’stuck’ will depend on the properties of the object, just as some
objects showing more neglect than others (Study 9 (i)). The more an object is displaced within the FOA,
the greater the likelihood of poor disengagement. The 2 used in this simulation is relatively robust to
such displacements, but allows us to examine processing of the + when it is subsequently selected.
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Figure 33: Line bisection in the lesioned version of SAIM. The stimuli were lines that
were either 7 (top), 5 (middle) or 3 pixels long (bottom).

would disrupt output from the selection network to the left side of the FOA, producing left
neglect within objects. Right neglect between objects would be due to damage to units in
the left hemisphere that receive input from the right visual field. Alternatively it might
be that similar selection networks exist in both hemispheres, perhaps with the networks
being mutually inhibitory. Strong activation of the selection network in one hemisphere
may then lead to inhibition of the equivalent network in the other hemisphere, with the
relative magnitude of activation in each network being determined by the task (e.g., lan-
guage tasks generating stronger left hemisphere activation; spatial tasks stronger right
hemisphere activation). This notion of task and hemisphere-specific activation can be
used to account for at least some patients who are reported as having a unilateral lesion
but still show neglect on opposite sides of space (Cubelli et al. 1991, Riddoch et al. 1995a).
In such cases, strong task-based activation of the damaged network could lead to it sup-
pressing the network in the opposite (undamaged) hemisphere. It can also accommodate
evidence that split brain patients can direct serial search simultaneously on both sides of
space (Luck et al. 1994), which would follow if the networks in the two hemispheres were
disconnected. We might also presume that connections from the left and right fields are
stronger into units in the opposite hemisphere, and output into the left and right sides of
the FOA are stronger in the opposite hemispheres. In this case, a vertical lesion to the
selection network in the left hemisphere could generate between-object neglect of items in
the right field, whilst a horizontal lesion to the selection network in the right hemisphere
could generate left-side neglect within objects.

3.8 Study 12. Line bisection.

In Studies 7-11, we have demonstrated general properties of SAIM after lesioning the
selection network. In Studies 12 and 13, we apply the model to two specific effects
reported in the literature on patients with extinction and/or unilateral neglect: (i) the
effects of length on line bisection, and (ii) performance in the Posner cueing task.
Study 12 examined the effects of length on line bisection. Line bisection is one of the
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Figure 34: Example of the parameters used to determine decay and rise times in activation
for cues and targets in the simulation of the effects of spatial cueing with a lesioned model.

traditional clinical tasks used to assess unilateral neglect. Patients are asked to mark
where they think the center of a line falls. Patients with neglect after right hemisphere
damage typically bisect to the right of the true centre (Bisiach et al. 1976, Halligan &
Marshall 1988, Marshall & Halligan 1990, Riddoch & Humphreys 1983). In addition, the
size of the rightwards error is typically related to the length of the lines: errors are shifted
further rightwards for longer lines (Marshall & Halligan 1990, Riddoch & Humphreys
1983). We tested whether SAIM, when lesioned to produce left neglect, shows a rightwards
bias in line bisection and whether it too is affected by line length.
The model was first tested after horizontal lesioning, using a single template in each
case, always matched to the length of the stimulus presented. SAIM was presented with
horizontal lines either 3 or 7 pixels long. Limitations on the size of SAIM’s retina and on
the size of the FOA constrained prevented more extensive manipulations of line length.
The results are presented in Figure 33. In each case, the horizontal line was displaced
towards the left of the FOA, with the right-most pixel set at the center of the FOA. With
the longer line, the right-most two pixels failed to be attended at all (falling outside the
FOA). If the perceived center of the line is judged to be where the center of the FOA
falls, then the true centre was displaced by 1, 2 and 3 pixels for the line lengths of 3, 5
and 7 pixels. The magnitude of the displacement increased as a function of line length.

3.9 Study 13. Cueing in neglect

3.9.1 (i) Posner et al. (1984)

Numerous papers have demonstrated that the magnitude of neglect shown by a patient
can be reduced by cueing the patient to attend to the affected side (e.g. Riddoch &
Humphreys 1983, Robertson et al. 1992). Indeed this effect of cueing has been taken as
one of the prime pieces of evidence to suggest that neglect reflects a disorder of visual
attention (see Riddoch & Humphreys 1987, for one example). Perhaps the best known
example of the effect of cueing is that reported by (Posner et al. 1984). They tested the
detection of ipsi- and contralesional targets in patients with unilateral parietal lesions.
Targets were preceded by brief peripheral cues that fell either at the location of targets or
on the opposite side of fixation to where targets appeared. Posner et al. found that there
was relatively little difference in RTs to detect ipsi- and contralesional targets when cues
were valid; however there was a marked difference on invalid trials: there was then partic-
ularly slow detection of contralesional targets. Posner et al. interpreted their findings as
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Figure 35: RTs for a lesioned version of SAIM to identify targets preceded by valid or
invalid spatial cues. Performance is shown as a function of the magnitude of the lesion
(rows) and the decay time for the cue (columns)(see the text for details).

indicating that the patients were selectively impaired at disengaging attention from ipsile-
sional cues to detect contralesional targets. We assessed whether such a disengagement
problem would occur in SAIM following lesioning to one side of the selection network.
The patients tested by Posner et al. did not have gross forms of neglect, though some
were reported as having extinction. To generate extinction we used a ’vertical’ lesion (as
in Study 7), but varied the strength of the lesion to provide a test of the generality of
the findings (see the Appendix for information on the magnitude of lesioning). With one
exception, noted below, the conditions otherwise matched those used to examine spatial
cueing in the unlesioned version of the model when detection alone was measured (Study
6). The one change made to the lesioned version of the model was to vary the parameter
for the decay of activation in the model; this was set to either 5.0 (’normal’), 1.5 or 0.7
at the lower parameter values there was slowed decay of activation from the cue, enabling
it to have an increased effect on responses to the target (see Figure 34). This turned out
to be important for the results.
The times taken for activation in the FOA to reach threshold are given in Figure 35.
When cues were valid, the time for convergence to be achieved in the FOA was less for
targets presented to the ipsilesional field than for targets presented to the contralesional
field. However, when the cues were invalid, this advantage for ipsilesional targets in-
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Figure 36: Effects of cueing the center of mass of a shape, following a left-side lesion. At
position -1 the cue falls to the left of the center of mass of the target shape.

creased. This general pattern occurred across all the parameters varied here, but it was
most pronounced when the temporal decay of the cue was increased and as the magnitude
of the lesion increased (from the bottom to the top graphs in Figure 35). With a faster
decay of activation from the cue, there was a relatively stronger effect of the lesion than
the cue, so that RTs were slow to contralesional stimuli even with a valid cue RTs. The
overall pattern of data matches that reported by Posner et al. (1984). The deficit on
contralesional targets is increased under conditions of invalid cueing.
In SAIM these effects of invalid cueing reflect competition in the mapping of stimuli
through to the FOA. A valid cue can facilitate this mapping by pre-activating units in
the selection network that represent a correspondence between the position of the target
in the visual field and the FOA. An invalid cue disrupts this mapping, since it generates
initial competition for a different mapping between the retina and the FOA. When input
into the FOA from the uncued area of field is weakened by lesioning, the effects of compe-
tition are increased. In this respect SAIM behaves similarly to other recent connectionist
simulations (Cohen et al. 1994, Humphreys et al. 1996b); like other models it shows an
’attentional disengagement deficit’ through exaggerated competition for selection within
a winner-take-all network. It again demonstrates that disengagement deficits are not nec-
essarily contingent on having a module to perform this processing operation (cf. Posner
et al. 1984), but rather such deficits can reflect unbalanced competition due to a spatially
asymmetric lesion.
Our finding that the parameter governing the temporal decay of activation is important
for this result is also of interest. In the main part, studies of deficits in spatial atten-
tion have concentrated on what we may term ’single factor’ accounts of any impairments.
One exception to this rule was reported by (Duncan et al. 1999). These investigators
attempted to characterise patients with unilateral right hemisphere lesions and signs of
neglect in terms of the parameters of the ’TVA’ model of Bundesen (1990). They found
that, in addition to any deficits in spatial selection, the patients also tended to have slowed
visual processing (e.g., their letter identification performance improved at a slower rate
than normal as stimulus exposure duration increased, even for stimuli presented in the
ipsilesional field). This non- lateralised deficit also predicted the degree of neglect shown
by patients in standard clinical tests. A similar argument has been made by Husain et al.
(1997), in a study using rapid serial visual presentation of letters at fixation. These stud-
ies indicate that non-lateralised processing deficits can contribute to the clinical picture of
neglect in many patients. A slowed decay of activation, as implemented in SAIM, would
lead to reductions in the speed of processing rapidly presented stimuli.
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3.9.2 (ii) Pavlovskaya et al. (1997)

In (i) above we used a lesion that generates extinction rather than neglect in SAIM. Effects
of cueing have also been reported on patients with frank neglect (e.g. Pavlovskaya et al.
1997, Riddoch & Humphreys 1983, Robertson et al. 1992). We now ask, is the result in
(i) generalisable to lesions that generate neglect in the model? In addition, Pavlovskaya
et al. demonstrated that cueing effects in neglect were affected by the position of the cue
relative to figural properties of subsequent targets. In Study 6 (iii) we simulated their
data for normal subjects. Here we assessed whether SAIM, when lesioned, could capture
their neuropsychological results.
With neglect patients, Pavlovskaya et al. found that cues to the left of the true center
of mass of a shape facilitated shape discrimination (unlike control subjects, who show
best discrimination when cued to the center of mass). They proposed that this displaced
cue shifted the location where the patient habitually attended (which fell to the right
of the center of mass), so that attention now fell at the center of gravity of the target,
facilitating its identification. In our simulation of this in SAIM we used a combined
vertical and horizontal lesion, to generate neglect as well as extinction (as in Study 8).
To measure identification the full version of the model was used, with a single template
for the target. The model was presented with a cross that fell on the left of the retina,
where some degree of neglect occurs when no cue is given (Figure 21). Prior to the target
occurring, a cue was presented either at the center of mass of the target shape or 1-3
pixels away on the left or right arm of the shape. In an unlesioned state, the effect of the
cue is larger when it falls at the center of mass of the target (Figure 16).
Apart from the lesion, the procedure was the same as in Study 6 (iii). Figure 36 presents
the results, with darker shading representing faster RTs. At point 0,0 the cue falls at the
center of the textured gmass of the target. At point -1, 0 it falls 1 pixel to the left but at
the same vertical height as the location of the center of the textured gmass of the target.
+ and - values on the vertical dimension have been averaged together for the figure. RTs
to identify the target were fastest when the cue fell to the left of the object’s center of
textured gmass then when it fell at the center itself, and they were slowest when the cue
fell to the right of the center of the textured gmass. Again this result is not dependent
on the use of a cross as the target, and similar effects of cueing in relation to the center
of gmass of the shape occur with other stimuli.
This result demonstrates two main points. First, that cueing can affect patients who show
neglect as well as extinction. Second, that the magnitude of the cueing effect is related
to figural properties such as the center of the textured gmass of the shapes, matching
again the human data (Pavlovskaya et al. 1997). SAIM generates these results because
(i) neglect involves a shift in where the center of attention is located within a shape,
and (ii) cueing the location where features appear gives these features a ’head start’ for
mapping into the center of the FOA. This can be sufficient to overcome a spatial bias in
the mapping process, when attention is cued to the features that would otherwise suffer
the bias.

3.10 Conclusions

In Section 2 we have shown how simulated lesions affect the performance of SAIM. SAIM
can be lesioned in different ways. We have examined lesioning that affects units that
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receive input from one part of the visual field (’vertical lesions) and lesioning that affects
units that transmit output to one side of the FOA (’horizontal lesions). Lesions that
include some ’vertical component are sensitive to the positions of items in the visual
field, and produce: spatial extinction, ’disengagement deficits after spatial cueing, and
effects of line position on bisection. These lesions can also produce problems in which the
model continues to select an object even after it has been attended before, due to poor
template-based inhibition (’sticky attention). In such circumstances there can be neglect
between two objects along with only a mild effect on recovering all the parts within an
object (i.e., there is between-object neglect; Humphreys & Heinke (1998), Humphreys &
Riddoch (1994, 1995). ’Horizontal lesions, in contrast, produce object-dependent neglect
that is affected by the positions of parts relative to the center of mass of the shapes, and
neglect is then uninfluenced by the positions of the shapes in the field. When subject
to such lesions, the model may select objects successively from different field locations
but then neglects the parts on the affected side of each one (i.e., there is within-object
neglect). A ’vertical lesion on one side, when coupled with a ’horizontal lesion to the
other, can even generate between- object and within-object neglect on opposite sides of
space within the same network. This double dissociation within a single patient is difficult
to account for in other models, but it matches the neuropsychological data (Costello &
Warrington 1987, Humphreys & Riddoch 1994, 1995). Also, neglect can be mediated by
properties of objects. ’Better objects, whose parts group or that fit with a stored stimulus
description, will show less neglect than objects that are less good, depending on other
factors such as field position and the magnitude of any lesion. Finally, data on the effects
of cueing on patients with parietal lesions can be simulated, especially when there are
changes in the decay parameter within the model, so that slowed processing of stimulus
information results. These cueing effects are sensitive to the relative positions of the cue
and the centre of textured gmass of the target shapes.
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4 General Discussion

SAIM is a model of translation invariant object recognition, in which invariance is achieved
by mapping activation through an attentional window (the FOA) en route to the activation
of stored templates for objects. Multiple objects, when present, compete to win the
mapping through the FOA. Hence SAIM provides a computationally-motivated account of
visual selection for object identification. Our simulations have shown that the model may
not only have useful computational properties (see also Olshausen et al. 1993, 1995), but
also that it can be applied to a broad body of psychological and neuropsychological data.
SAIM provides a qualitative account of such data. Within the boundaries of how SAIM
represents stimuli, the model predicts qualitative patterns of performance in a systematic
fashion, according to how stimuli are coded within the model. This approach, however,
needs some justification, since in many simulations modellers attempt to relate network
performance (e.g., timed in network iterations) directly to actual reaction time or accuracy
data. We first consider the utility of qualitative modelling, and whether such a modelling
approach could be refuted. We subsequently review three aspects of the model that we
believe make it attractive as a general approach to modelling human visual selection: (1)
the way in which SAIM links objects to space; (2) the way in which SAIM combines
selective processing with its coding of objects in particular representational schema; and
(3) its ability to integrate some seemingly disparate phenomena from the syndrome of
unilateral neglect within a single framework. We finally discuss (i) the relations between
the model and others in the literature, (ii) some emergent properties of the model (in terms
of both visual selection and spatial working memory), (iii) some results on visual selection
that the model does not address and (iv) the biological plausibility of the framework in
SAIM and how it may be extended.

4.1 Qualitative fit and the refutation of models

SAIM is by no means the first connectionist model that has been used to provide a
qualitative fit to data; for example, simulations of word recognition using the interac-
tive activation and competition framework also took a similar approach (McClelland &
Rumelhart 1981), and an analogous approach has been used in nearly all other models of
visual attention (e.g. Humphreys & Müller 1993, Mozer 1991, Phaf et al. 1990). The aim
of a qualitative approach is to demonstrate patterns of behavior in the model that match
those found in human subjects. In the normal (unlesioned) version of SAIM, the patterns
of behavior include:

(i). the effects of the center of textured gmass on both object coding (the center of
textured gmass is the frame around which other parts are linked, within the FOA)
and attention (which is drawn first to the center of textured gmass; Study 1);

(ii). the costs of selection when there are multiple objects in the field (Study 2);

(iii). the tendency of the model to select the better’ of two objects first (Study 2);

(iv). the tendency to make false alarms to stimuli similar to expected targets (Study 3);

(v). the faster identification of the whole rather than the parts of objects (Study 4);
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(vi). the effect of spatial cueing on visual attention, including effects of the center of mass
of the object and inhibition of return (Study 5);

(vii). the effects of object-based properties on both attentional cueing and on inhibition
of return (Study 5); and

(viii). the ability to select one of two overlapping shapes, presented in the same spatial
region (Study 6).

In the lesioned version of the model the patterns of behavior simulated include:

(i). visual extinction (Study 7);

(ii). field-dependent and object-based neglect (Studies 8 and 9);

(iii). the effects of top-down knowledge on helping recovery from neglect (Studies 8 and
10) and extinction (Study 10);

(iv). the effect of the center of mass of an object on neglect (Study 9);

(v). neglect errors due to premature acceptance of a known part of an object (Study 10);

(vi). neglect between’ as well as within objects’, even within the same model when subject
to two lesions (Study 11);

(vii). the effects of line length and cueing on neglect (Study 12); and

(viii). the effect of cueing on neglect, including the interaction between the position of the
cue and the center of mass of the object (Study 13).

In all of the above aspects, the performance of the model matches the patterns of effects
found with human subjects. We suggest that this attests to the power of the model as
a framework for understanding human visual selection. There was only one significant
change to the parameters needed for a particular simulation (apart from the variations
in top-down activation, but these variations were the model’s means of reflecting the fa-
miliarity of the objects) this was the change in the decay parameter, which influenced
the effect of a cue on responses to a subsequent target when the model was lesioned.
However, even this change can be related to evidence on non-spatial deficits in processing
associated with visual neglect and extinction (e.g. Duncan et al. 1999).
Now the way that SAIM produces some effects does not in every case match precisely
the factors that are likely to be important in human perception. An example is the effect
of the goodness’ of the object on selection. As noted above, given good’ and less good’
objects in the field, SAIM tends to select the good object prior to the less good one.
For SAIM the goodness’ of an object can be defined bottom-up, in terms of the relative
prximity of the pixels in the object and the magnitude of its textured gmass (Study 2).
Goodness’ can also be defined in a top-down manner, in terms of whether an object has a
pre-activated template (Study 3). In humans comparable studies have evaluated selection
with degraded and undegraded objects (Farah et al. (1991); or high and low contrast
stimuli, Gorea & Sagi (2000)), and selection with stimuli subject to learning via varied or
consistent mapping (Shiffrin & Schneider 1977). In addition, neuropsychological studies
show that better’ objects win the competition for extinction, when object goodness has
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been varied in terms of whether line elements are collinear and whether a closed or non-
closed pattern is presented (Humphreys et al. (1994); see also Ward & Goodrich (1996).
In its present form, SAIM cannot simulate some of these effects. For example, SAIM is
not sensitive to factors such as edge collinearity or closure, and so would show no bias
for a closed over a non-closed pattern, if the patterns were matched for the magnitude of
their textured gmass. We do not believe this is crucial, however. The qualitative pattern
of performance shown by SAIM indicates that, within a competitive model of this sort,
an advantage gained for one pattern over another (whether due to bottom-up grouping
or top-down activation) will pan out in terms of unbalanced competition for selection.
By building a more sophisticated front-end to the model, we would be likely to simu-
late effects of closure and collinearity on selection precisely because these factors would
also influence competition within the model, the general principles of which have been
explored here.
An alternative to the qualitative approach would be to attempt to match the number of
iterations in the model to a measure of human performance, such as reaction time (see
Seidenberg & McClelland 1989, for one example), so that a quantitative fit is provided.
The difficulty with this is that our simulations have been applied to a substantial range of
studies, which have used widely different stimuli and tasks. The simulations with SAIM
show that the time taken to attend and to identify objects depends on factors such as the
number of objects in the set, the center of mass of objects, the spacing between the objects
and so forth. The procedure of providing a quantitative fit would involve making several
arbitrary assumptions and run the risk of providing a spurious validity that is essentially
dependent on the setting of particular parameters. Instead of this, we have shown that a
single set of parameters in SAIM generate reasonable results across substantial variations
in stimuli (e.g., see Figures 6 and 7). We suggest that a qualitative approach, in which a
model matches large data sets from psychological studies, can provide useful constraints
on theory (see also Mozer & Sitton 1998, for a similar argument).
One legitimate concern with a qualitative approach to simulation, though, is whether
such models could ever be refuted. We suggest that SAIM can be refuted, but what is
important is to distinguish attributes that are critical to the operation of the model and
those take the form of implementational detail (see Ellis & Humphreys 1999, for a more
extended discussion of this argument). We point out three factors that are critical to the
current operation of SAIM: (i) that there is translation invariance by means of mapping
visual information through an attentional window; and (ii) that mapping into the window
operates over time, controlled by bottom-up factors such as element proximity, and (iii)
and that object-based effects in the model are contingent on the use of stored templates.
On each of these points SAIM is open to refutation.
Take factor (i). The means by which translation invariance is achieved in SAIM leads to
outputs from the attentional window being coded in terms of the relations of parts to the
object, irrespective of the lateral position of the objects in the field. This predicts that
lesioning can have the same selective effect on object identification irrespective of lateral
object position, as is found in object-based neglect. However, if forms of object-based
neglect did not exist (e.g., if all such disorders were bound to the retinal positions of
stimuli, say), then the model would again be incorrect in a fundamental point. Given
SAIM’s architecture, it has to break down in this particular way. In addition, our simu-
lations of object-based neglect indicated that RTs to a target need not vary dramatically
as a function of whether the target fell on the contra- or on the ipsilesional sides of space
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(Figure 23). RTs in patients with object-based neglect need not be strongly affected by
visual field. This is clearly open to empirical test.
Now take factor (ii). In SAIM the mapping into the attentional window is guided by
factors such as inter-element proximity, which provides perhaps the simplest bottom-up
constraint on selection without even this constraint, SAIM would fail to map parts of
objects together in any sensible way. Again, the model would be incorrect if it turned out
that human perception was not influenced by proximity or by factors such as the center
of mass of an object. It turns out, however, that SAIM’s sensitivity to the center of the
textured gmass of a shape not only accounts for existing data (e.g., using attentional
cueing paradigms) but also leads to new predictions about the time course of attention to
objects. SAIM holds that objects are not attended in a single step but rather attention
spreads over time, from the center of mass of the object to its outer fringes. The model
is open to refutation on this point.
Finally, consider factor (iii). SAIM implements object- based effects on selection in a quite
specific manner: by means of activation from templates for known objects. Now many
psychological experiments on this topic use very basic stimuli (e.g., simple boxes), and it
is not clear whether any object- effects then reflect stored representations for these items,
or whether they reflect novel object files’ set up on the fly, on each trial of the experiment
(cf. Kahneman & Treisman 1983). SAIM, however, predicts that effects specific to known
objects should be apparent in these studies. Tipper (2001) has recently explored this in
studies of inhibition of return. His data suggest that our attention is biased away from
a particular face, having attended to that face previously, as would be expected if there
were inhibition of the stored representation for that face. SAIM also predicts that selec-
tion should be influenced by stored knowledge even when bottom-up factors do not favor
one object over another. As we have noted, neuropsychological data on visual extinction
are consistent with this. For example, there is less extinction for letters in words than
for letters in nonwords, though bottom-up information is much the same for these stimuli
(Kumada & Humphreys 2001). For SAIM the effects of stored knowledge should not only
occur in tasks requiring read out’ from high level representations (e.g., word identification)
but also in low level’ tasks not requiring identification of the whole stimulus as a single
unit’ (e.g., in detection or in tasks such as identifying the colors of individual letters; cf.
Brunn & Farah (1991). If top-down effects are found only on high-level tasks, this would
contradict the model.

4.2 Useful properties of the model

There are several properties of SAIM that make it attractive as a framework for under-
standing visual selection. We consider three.

1. Linking objects to space.
Both psychological and neuropsychological evidence suggests that visual selection
is affected by both the spatial relations between stimuli (Posner 1980, Posner et al.
1984) and by grouping relationships between image features (Baylis & Driver 1993,
Donnelly et al. 1991, Duncan 1984, Egly et al. 1994, Humphreys & Heinke 1998,
Vecera & Farah 1994, Ward et al. 1994). General frameworks have been proposed to
account for such effects (e.g., suggesting that top-down influences from object coding
and grouping activate areas of field to which a spatial attention system spreads; see
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Farah (1990), Humphreys & Müller (1993), but none have hitherto been worked
out in detail. SAIM provides detailed mechanisms by which object properties may
modulate spatial selection. In the simulations presented here, two mechanisms are
explored: bottom-up grouping by proximity relations within the selection network
(see Study 1), and top-down grouping by template activation and feed-back to the
selection network (Study 4). We have shown that, armed even with just these
mechanisms, SAIM is able to accommodate data indicating effects of both object
coding and spatial proximity on selection.
SAIM also simulates such effects in a way that differs from some other computational
models, though other models do maintain that grouping influences our ability to
select parts of stimuli together. For example, in the MORSEL model of object coding
and selection (Mozer 1991), grouped elements may be selected together because they
jointly activate a stored representation; however grouping between elements does not
directly determine the locations where spatial attention falls (indeed in MORSEL
high-level groups are abstracted from location information, and so cannot easily
provide useful information concerning the positions of their features). SAIM, in
contrast, directs spatial attention to cover the area where parts of the same object
fall, by top-down feed-back into the selection network. There is evidence in favour of
this account. Kim & Cave (1995), for example, had subjects identify a target letter
defined by its position. The target appeared along with a distractor of the same
color (the grouped distractor) and a distractor of a different color (the non-grouped
distractor). Immediately following the display, a probe could be presented. RTs to
the onset of the probe were faster when it appeared in the location of the grouped
distractor than when it appeared in the location of the non- grouped distractor.
Thus, when a group is selected, attention seems to be directed to the locations of
its members. This is in accord with the general principles of SAIM, though the
model as presented here does not have the capacity to group by color and so cannot
simulate these results precisely. SAIM also predicts that object-coding should not
only influence spatial attention when stimuli are grouped by bottom-up cues but
also when grouping and selection are determined by stored knowledge (even by
being the more familiar of two objects). We have examined this in preliminary
neuropsychological studies in which we briefly presented two stimuli that differed in
goodness’ at variable locations. Patients with parietal lesions can select the better
of two stimuli, extinguishing the other, irrespective of where the stimuli appear in
the field (see Humphreys et al. 1994, Ward & Goodrich 1996, for evidence). We
followed the stimuli by two letters and asked patients to identify the letters. There
was improved report of letters that fell at the location of the better figure. This is
consistent with object-based selection leading to enhanced processing of the selected
locations, consistent with SAIM’s approach. It is not clear how other models would
capture such results.
The contrary case is when objects are spatially overlapping (or adjacent), when
spatial selection by means of some undifferentiated spotlight or zoom lens may not be
possible (cf. Duncan 1984). Within the framework of SAIM, selection of overlapping
figures is possible if the template for one object can be activated selectively, enabling
top-down biases to guide selection (Study 7). This process may also be helped
further by appropriate scaling of the size of the attentional window, so that parts
of each figure are selected over time. The issue of scaling will be examined in future
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work. The over- arching point, though is that the distinction between spatial and
object-based selection is artificial for SAIM: both types of information interact to
determine selection.

2. Spatial representation and attention. In addition to blurring the distinctions be-
tween space- based and object-based theories of selection, SAIM also blurs tradi-
tional accounts in neuropsychology that maintain that visual neglect is either a
disorder of spatial representation or a disorder of attention. We believe this is an
important point. For SAIM, spatial selection is a necessary process for translation
invariant object recognition, and translation invariant object recognition involves
coding the properties of stimuli into different forms of spatial representation (from
one coded within a retinal co-ordinate system to one that is dependent on the center
of mass in an object). Neglect in the model is indeed a disorder of attention, since
lesioning can prevent all of the parts of a stimulus from being attended. However
for SAIM neglect is also a disorder of spatial representation, since it disrupts the
formation of certain forms of representations of stimuli (e.g., the formation of an
object-dependent representation, within the FOA). For SAIM it does not make sense
to discuss neglect as either a disorder of spatial representation or attention; it is a
disorder of both.

3. Integrating different aspects of the neglect/extinction syndrome. To a disinterested
party, syndromes such as unilateral neglect may seem to consistent of a multitude
of deficits, with the symptoms of different patients appearing unrelated or even
frankly contradictory with one another. Examples relevant to the simulations pre-
sented here are the dissociations between view-dependent and object-based neglect,
the relations between neglect and extinction. These differences in symptoms within
the neglect/extinction syndrome may detract from attempts to use neuropsycholog-
ical data to influence models of normal object recognition and attention. SAIM,
however, provides a framework that enables the contrasting symptoms to be under-
stood in relation to one another and in relation to functional components of normal
cognition. The model shows that complex neuropsychological disorders can be un-
derstood in a systematic manner.
A first example of how SAIM can accommodate different forms of neglect is in our
simulations of view-dependent neglect, on the one hand (after a vertical’ lesion of
the selection network), and object-based neglect on the other (after a horizontal’
lesion). For SAIM, the two forms of neglect are a natural consequence of how trans-
lation invariance is achieved with activation mapped into the selection network
from a retinal co-ordinate system, and mapped out of the selection network (into
the FOA) into an object-based co-ordinate system (coding the positions of left and
right features relative to the center of mass of an object). These forms of neglect
are not contradictory but rather reflect breakdowns at different stages of object se-
lection.
A second example is the relation between visual neglect and extinction. Very often
extinction is thought to be a moderate form of neglect. On the other hand, there
is evidence that neglect and extinction can doubly dissociate (e.g. Cocchini et al.
1999). In addition to some patients having extinction without neglect (as expected
if extinction can occur with a less severe lesion), other patients can manifest ne-
glect of single stimuli but do not have particular difficulties when presented with
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multiple items. This dissociation is difficult to explain if there is only a single locus
within a model where a spatially sensitive lesion can be effected. SAIM, however,
can be lesioned at different loci to generate view- and object-based deficits. The
object-based deficit does not necessarily generate a problem in selecting multiple
stimuli (Figure 26); there can be neglect without extinction. In contrast, a mild
field- dependent deficit will generate extinction without neglect, due to differential
competition for selection between stimuli in the contra- and ipsilesional fields. The
model provides a natural account of such dissociations.
In addition to the dissociations we have noted, there are in fact several other con-
trasts between patients that SAIM does not capture. For example, there are patients
whose neglect appears to be confined either to near or far space (Cowey et al. 1994,
Halligan & Marshall 1991), and there are patients whose neglect is pronounced when
motor actions have to be addressed to objects but not when perceptual judgements
are made (e.g. Milner & Harvey 1995). Our suspicion is that these additional dis-
sociations will be captured once models begin to link perception to action, allowing
the disorders to arise from lesions that translate visual information into representa-
tions within various forms of action-coded co-ordinate systems. In future extensions
we aim to use representations computed within the location map in SAIM to guide
action to stimulus locations, and we will explore whether additional dissociations
emerge. Even without these extensions, though, SAIM provides a framework for
accounting for dissociations within perceptual forms of neglect.

The existing neuropsychological evidence does not only indicate dissociations between
patients, but also associations between symptoms in particular cases. An example of
this is the relation between visual neglect and apparent impairments in spatial working
memory, where neglect patients may unknowingly select previously attended locations and
stimuli in search tasks (Husain et al. 2001). Based on the neuropsychological data alone
it is difficult to judge whether such associations are simply due to anatomical accident (a
large lesion affecting two independent processes), or whether they are indeed functionally
related (see Humphreys & Price 2001, for one recent discussion). Computational models
can provide a reasoned account of why such associations arise. SAIM carries an implicit
spatial working memory of previously attended locations, based on positions subject to
inhibition within its map of locations. Following lesioning, however, the ability to inhibit
previously attended locations can be disrupted a deficit caused by shifts in the locations
of stimuli within the FOA, and so associated with neglect. Under these circumstances,
SAIM can be drawn back to re-select an object (and spatial locations) it has previously
attended. The model operates as if there is a disturbance to its spatial working memory.
For SAIM, this behavior is not due to a lesion to a spatial working memory system that
is independent of the system concerned with spatial selection; rather it is an emergent
consequence of the disorder in spatial selection.

4.3 Relations between SAIM and other models of visual selec-
tion

Psychological models of visual selection have traditionally been based on a two-stage pro-
cess in which early pre-attentive processes, which are spatially parallel, are followed by
later attention-dependent processes, which are spatially serial (Neisser 1967, Treisman
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1988, Treisman & Gormican 1988). The serial, attentional processes have been conceptu-
alised in terms of ’spotlight’ and ’zoom lens’ analogies. In many models (e.g., Treisman’s
Feature Integration Theory (FIT), Treisman (1988, 1998), attention is required in order
to bind the parts of objects together, and this process must take place before objects
contact stored memories. SAIM has a general architecture that is consistent with this
distinction, between spatially parallel and then spatially serial processes. Initial activa-
tion within both the selection and the contents networks takes place in parallel across an
image and irrespective of the number of objects present. This is followed by a serial stage,
in which only a single object is selected. One computational reason for the serial selection
process in SAIM is to facilitate binding of features within objects, since selection prevents
competition from features in other objects from being available for binding. In addition
to this, SAIM, like FIT, binds features by dint of their activating stored memories (for
SAIM templates that specify the positions of parts relative to the center of gravity of
the shape). However SAIM differs from traditional models in that the pre-attentive and
attentional stages for the model are not serial and discrete, rather both pre-attentive and
attentive states emerge together, in parallel over time. Also there is partial activation of
stored knowledge from multiple objects as the model selects stimuli, and this knowledge
is used interactively to facilitate selection. For SAIM, parts of an object that are initially
attended help to determine how subsequent pre-attentive processing operates (biasing se-
lection towards other parts of the same object). SAIM is an interactive, two-stage model,
and does not mimic either strict early- or strict late-selection.
SAIM models visual selection in terms of competitive interactions between stimuli, with
these interactions being biased by several factors: the size and perceptual goodness of
objects (at least as defined in terms of the model; e.g., how well parts group by proxim-
ity), how much objects activate stored templates, the familiarity of the templates, spatial
biases (e.g., after lesioning). These over-arching principles of selection via competition are
common across several models of visual attention (e.g. Bundesen 1990, 1998, Humphreys
& Müller 1993, Mozer 1991), and they are embodied in general accounts of selection such
as the integrated competition approach (Desimone 1998, Duncan 1998, Duncan et al.
1997). The particular forms of this competition, however, are of course specific to the
model and the way in which the selection network operates.
As we pointed out in the Introduction, there have been several other attempts to develop
detailed computational models of visual selection, some of which have been designed
around specific experimental tasks (Cohen et al. 1994, Humphreys & Müller 1993), some
of which have been applied to a range of experimental procedures (e.g., the MORSEL
model, Mozer (1991), Mozer & Sitton (1998), and some of which have been applied to
neurophysiological data (Olshausen et al. 1993, Usher & Niebur 1996, Koch & Ullman
1985). The most wide-ranging model, as far as psychological applications are concerned,
is MORSEL. MORSEL has two main parts. The first is an object recognition system,
which operates in a hierarchically organized fashion. Initial units in the system are acti-
vated according to the locations where stimuli fall on the retina. These units also encode
specific features of objects (e.g., edges of a given orientation), and so extend the simple
pixel-coding procedure used by SAIM. Units at higher levels in the object recognition sys-
tem pool activation from units at lower levels responding to the same features at different
locations, so that gradually activation becomes viewpoint-independent. At the highest
level of the model, stored representations are based on distributed coding of viewpoint-
independent features. A ’pull-out net’ serves to clean-up activation, so that degraded
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inputs can be recovered; this will favour known over unknown objects. However, when
there are multiple objects in the field, the model encounters problems of binding, since
activated features of different objects may be linked together via the pull-out network.
The second part of the system is an attentional network. Units in this network gate
activation entering into the object recognition network, so that it is biased to favour at-
tended objects. This reduces the binding problem. Units in the attentional network are
retinotopically organized, and they operate in a winner-take-all fashion so that atten-
tion tends to become focussed on one location (though the size of this focus can vary,
since self-supporting neighbourhoods are used). Attention units are activated either in a
bottom-up fashion (exogenously), according to the strength of activation of features units
at each retinal location, and in a top-down fashion (endogenously), by pre-setting some
units to be active at an attended region of field.
MORSEL, like SAIM, has been used to simulate a wide range of psychological phenomena
including spatial cueing and forms of neuropsychological disorder such as visual neglect
(e.g. Mozer 1991, Mozer et al. 1997). It undoubtedly provides a useful framework for
conceptualizing interactions between object recognition and visual attention, and, more
than SAIM, it has been extended to enable patterns of data on human visual search to
be simulated (Mozer & Sitton 1998). However, we suggest that SAIM’s linkage between
translation-invariant coding and attention provides a more natural account of dissoci-
ations within neuropsychological disorders such as neglect. As discussed in Study 11,
MORSEL has some problems in explaining dissociations between neglect within- and ne-
glect between-objects. Within MORSEL spatially graded lesions, across the attentional
network, can generate deficits that are more severe on one side of an object than the
other irrespective of where the object appears in the field, capturing a form of object-
based neglect. However, it may be problematic for this account to explain how, with a
graded lesion, a complete left side object would be neglected whilst there is no neglect of
the parts within a right side object (in between-object neglect; see Humphreys & Heinke
(1998). Finally, cases in which there is apparently neglect between objects on one side of
space accompanied by within- object neglect on the other side seem especially puzzling
(cf. Humphreys & Riddoch 1994, 1995). For similar reasons, there can be problems in
explaining double dissociations between neglect and extinction. Extinction could arise
under conditions in which the lesion is not so severe as to produce neglect, but, when
deficits arise from lesioning a single site (the attentional module, in MORSEL), a lesion
producing neglect should also lead to problems when multiple stimuli are present. The
neuropsychological data indicate that this is not always the case (Cocchini et al. 1999).
Nevertheless there are means by which MORSEL can simulate object-based effects in
neglect. Take as one example a study by Behrmann and Tipper (Behrmann & Tipper
(1994, 1999), Tipper & Behrmann (1996) see also Driver & Halligan (1991). Behrmann
and Tipper presented patients with a barbell stimulus that rotated in the plane so that the
original left-side part fell in the right field (and vice versa for the original right- side part).
They found that right hemisphere lesioned patients were slowed to targets appearing in
the right-side (ipsilesional) part, after the barbell had been rotated. The same result did
not occur when the parts were not joined together to make a barbell; performance then
remained worse for left-side targets even after rotation. To mimic this situation, Mozer
(1999) presented stimuli dynamically (at one location for a set number of iterations, fol-
lowed by the next location and so on). When lesioned, MORSEL initially allocated more
attention to the right relative to the left side of the bar bell. Interestingly, due to the
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dynamics of the attentional network, activation was maintained on the same (right) side
of the bar bell as the stimulus was rotated so that its right side gradually fell into the left
field (likewise, the left side of the bar bell remained relatively inactive when rotated to fall
into the right [good] field). This demonstrates that a view-specific attentional system is
capable of generating apparent object-based effects, based on a form of dynamic tracking
of attention to an object, over time.
However, even without using tracking procedures (and even with static stimuli) SAIM
can simulate many of the results that support the existence of both view- and object-
based neglect. SAIM captures such effects because the selection network is dependent on
both the positions of objects in the visual field and the positions of their parts within an
object- dependent FOA. These dependencies are embodied in different sets of connections
within the selection network, making it vulnerable to contrasting forms of lesioning. If
the mappings from one side of the visual field into the selection network, and from the
selection network into one side of the FOA, are affected by damage in one hemisphere,
then a unilateral lesion will tend to produce a deficit on one side of view-dependent or
object-dependent space; bilateral lesions may produce deficits on opposite sides of space
if they affect different representations.

4.4 Emergent properties of SAIM

There are several properties of SAIM that emerge not by being specifically programmed
but because of the way in which processing operates within the model. These emergent
properties capture aspects of psychological performance, and also make predictions for
future empirical tests of the model. We highlight five examples.
First, as discussed in the last section, SAIM tends to place its center of attention at the
location of the center of mass of a shape. This characteristic arises out of the excitatory
interactions that operate within the selection network, which give most support to pixels
at the location of the center of mass. Though not an explicit aim of the model, this
property has useful psychological application.
Second, SAIM shows a time course of selection in which some parts of an object are
initially given more weight then others: locations at the center of the textured gmass of a
shape are activated first within the FOA, followed by those further from the center of this
location. This predicts that attention should not be captured by all features within an
object simultaneously, a prediction that we are currently exploring empirically. However,
SAIM also groups the parts of an object together so that all the parts tend to fall within
the FOA (albeit over a certain time course). It can thus be applied to evidence showing
that multiple features of objects can be selected together (see Duncan 1984). Indeed, once
selected, parts within the same object may not be ignored, even if they are detrimental to
task performance; this meshes with evidence that grouping can sometimes be detrimental
to performance, when the task requires selection of a member of a group (e.g. Pomerantz
1981, Rensink & Enns 1995). SAIM predicts that there should be selection of all object
properties together, but over a systematic time course.
Third, SAIM manifests general costs to selection when there are multiple items in the
field. These costs occur even when a distractor is successfully rejected in the competition
for selection, and even when it does not contain features that should strongly activate
a target template. Psychological evidence for generic costs on visual selection from the
presence of ’non-competitive’ stimuli in the field comes from studies of ’filtering costs’



Attention, spatial representations and visual neglect 82

(Eriksen & Hoffman 1972, Treisman et al. 1983). SAIM shows how such costs can arise
within a competitive selection system.
Fourth, like other competitive models of visual attention (Cohen et al. 1994, Humphreys
et al. 1996b), SAIM demonstrates the emergent property of ’impaired disengagement’
of attention after it is lesioned and when it is given an invalid spatial cue. It is clear
that models do not need a specific module for attentional disengagement for this process
to take place, and for it to break down in a way that mimics human performance. In
competitive models, impaired disengagement of attention is a natural consequence of
unbalanced competition for selection, when a salient precue increases the unbalance that
already exists due to a spatially selective brain lesion. In fact, SAIM shows two forms
of attentional disengagement in its behaviour. The first, which is similar to previous
demonstrations, involves a delay of shifting attention to a target on impaired side of space
after a cue has been presented on the ipsilesional side. Under short exposure conditions,
this delay will result in spatial extinction. A second disengagement problem, however,
arises when SAIM fails to inhibit representations activated by a target first selected. This
arises because there is spatial distortion in the lesioned version of the model even when
stimuli are attended (see Figure 27). This second form of disengagement problem was not
a planned property of the model, but, as we have noted above, it can be linked to apparent
deficits in working memory in search tasks. In addition, it is through this property that
SAIM can neglect of whole-objects that fall to the contralesional side of other objects in
the field, as is found in between-object neglect.
Fifth, SAIM was designed to produce translation-invariant object recognition. However,
the final stages of object recognition in the model are not view-invariant, in the manner
that theories such as those of Biederman (1987) and Marr (1982) are. Those theories
involve the extraction of invariant properties of objects (non-accidental features, features
relations relative to the main axis of an object), that can then be matched to stored
representations to enable objects to be identified from any viewpoint. The representation
itself may be view-independent. This contrasts with the templates for objects in SAIM,
which are coded for view; objects whose parts fall in positions within the FOA that
do not match the positions specified in the template will be identified less well. The
representation mapped into the FOA may be thought to have some similarities with
Marr’s suggestion of an axis- based description for invariant recognition, in that the
representation is focused on the center of mass in a shape. However, SAIM has no easy
means of dealing with rotation, either in depth or in the plane. The co-ordinates of its
attended representation are determined by how parts fall on the retina in relation to the
center of mass. Rotating an object will change the relations of the parts to the center
of mass of the object on the retina, disrupting recognition. In this sense, the object
recognition part of SAIM is closer to template-matching models of object recognition
than to view- invariant models. The topic of template vs. view-invariant procedures in
human pattern recognition has been hotly debated over the past few years (see Biederman
& Kalocsai 1997, Edelman & Duvdevani-Bar 1997) and runs tangential to SAIM’s main
concern with visual selection. Nevertheless, some properties of SAIM’s performance are
a consequence of its view-specific approach. One, that we have discussed above, is its
problem in inhibiting attended objects whose representations are distorted within the
FOA. A second relates to the form of within-object neglect observed after the model
is lesioned. This form of neglect means that parts that fall on the contralesional side
of objects will be neglected irrespective of the left-right positions of objects in the field
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(see Study 9). However, if the object is inverted, the former contralesional parts will
then fall on the ipsilesional side of the center of the textured gmass of the object and
the former ipsilesional parts will fall on the contralesional side. SAIM predicts that the
parts neglected across these occasions will change, in that the contralesional features as
the object falls on the retina will always be the ones that are neglected. This matches
several reports in the neuropsychological literature of patients who can show neglect of
left-side features of objects in the right field, but who continue to show neglect of the
left parts of objects as they fall in the field when the objects are inverted (Humphreys
& Riddoch 1995, Young et al. 1992). SAIM uses a form of object- based representation,
but one in which parts remain coded for their retinal positions with respect to the center
of mass of the object. With this representation the model is able to capture data on
both translation-invariant neglect and on the effects of object center of mass on neglect
(e.g. Pavlovskaya et al. 1997, see Study 13). We need to be cautious when using these
last results to argue for the involvement of full object- centred representations in object
recognition and neglect.

4.5 Factors not covered

Not surprisingly, given the wealth of data on human visual selection, SAIM fails to capture
many findings in the field. For example, the model does not simulate the observation that
patients with left neglect can bisect very short lines slightly to the left (rather than the
normal ’neglect’ pattern in which bisections are shifted to the right, see Marshall & Hal-
ligan (1990)). At present, SAIM predicts that there should either be no neglect for short
lines or, as with longer lines, bisection responses should be shifted to the ipsilesional side.
A similar pattern to that produced by SAIM was generated by MORSEL when lesioned
(see Mozer et al. 1997). Mozer et al. proposed that the contralateral (left) shifts with
very small lines might reflect a constant bias, found even with normal subjects, towards
the left side. Consequently, when the model shows minimal neglect (with short lines),
bisection tends to veer to the left. It is possible for a similar assumption to be built into
SAIM, although it would stand outside the current framework.
The model also does not deal with factors such as the hemispace of stimulus presenta-
tion, that can affect the performance of neglect patients (Karnath et al. 1991, Riddoch
& Humphreys 1983). Such effects suggest that the positions of stimuli with respect to a
patient’s body can be more important than the position of the line on the retina. It may
be that the form of coding within the selection network might need to be elaborated, to
allow body or head position to influence mapping, as well as the positions of objects on
the retina. Similarly, there may be input from sensory input other than vision, and this
may explain why forms of cross-modal extinction and neglect can arise (see Mattingley
et al. 1997). This is beyond the scope of the present model.
Other pieces of neuropsychological evidence not simulated here include the apparently
’true’ object-centred forms of neglect found when patients neglect parts according to
their positions relative to an arbitrary part of the object, and so neglect these parts even
when objects are rotated or inverted. For example, Caramazza & Hillis (1990) reported
a patient who showed neglect of the right end letters in words when reading. When the
words were rotated so that these right end letters now fell at the left end of the words on
the retina, neglect of the same letters (now on the left) was found. As noted above, this is
not the result found in other cases, and it is not the result that SAIM would generate (ne-
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glect would occur on the new features now falling at the right end of the inverted word).
Similarly, SAIM does not easily explain the findings reported by Behrmann & Tipper
(1994, 1999), Tipper & Behrmann (1996) (see above), when stimuli were rotated from
one position into another. For SAIM some form of correction for small rotations could
occur within the FOA if top-down knowledge is allowed to play a large part in mapping
retinal input to stored knowledge (e.g., top-down activation would support the features of
objects in the positions they would occupy if the objects were upright), but this may also
lead to too strong top-down modulation of processing in other circumstances. Additional
possibilities are to (i) incorporate some form of dynamic tracking of input, as done in
MORSEL, at least when objects move so that formerly left parts shift into the right field
(cf. Behrmann & Tipper 1994, 1999), or (ii) add in some form of mental rotation process,
so that objects are first transformed into an upright orientation and then identified. There
is some suggestion that this strategy may be adopted by patients whose neglect shifts with
the positions of the features in the objects (Buxbaum et al. 1996). This remains to be
examined in full in the context of the model.
Other factors not incorporated into the present version of SAIM are: the use of more
sophisticated grouping procedures (e.g., using collinearity, closure, connectedness), the
processing of features other than intensity and shape (e.g., color, texture, depth, motion),
and the instantiation of endogenous as well as exogenous attention.. There is abundant
psychological and neuropsychological evidence for more complex shape features playing a
role in early grouping processes (Donnelly et al. (1991), Elder & Zucker (1993), Gilchrist
et al. (1996, 1997), Kovacs & Julesz (1993); similarly grouping may also operate on fea-
ture values such as color, texture, depth and motion (e.g. Nakayama & Silverman 1986,
McLeod & Driver 1993). By incorporating processes sensitive to these additional factors,
SAIM should be able to provide an even broader account of human visual selection. In
addition, a full account of human visual selection will need to incorporate procedures
for endogenous as well as exogenous orienting of attention. Experimental, and neuropsy-
chological data converge in suggesting that there are distinct procedures involved in the
voluntary as opposed to the automatic control of attention (e.g. Jonides 1981, Jonides &
Yantis 1988, Müller & Rabbit 1989, Rafal & Robertson 1995). Sustained activation to
attended locations within the saliency map may have the effect of biasing selection in a
top-down fashion, so that endogenous as well exogenous effects can be captured. Work is
underway to implement these changes in an updated version of the model.

4.6 Biological plausibility

As we have noted, SAIM uses processes similar to the dynamic routing circuit proposed by
Olshausen et al. (1993, 1995) to achieve translation invariant pattern recognition, whilst
extending that model by incorporating features such as top-down modulation of selection
and a saliency map. Olshausen et al. argue for the biological plausibility of their model.
They suggest that aspects of the pattern recognition system (in SAIM, the knowledge
network) mimic cells in inferotemporal cortex, concerned with representating the proper-
ties of known visual shapes. Such cells have large receptive fields (e.g. Gross et al. 1972),
and so respond irrespective of where critical stimuli appear on the retina. A similar lack
of tuning to retinal position exists for template units here. Also, though the templates in
SAIM are translation- invariant, they are sensitive to the spatial positions of parts from a
particular vantage point. Hence SAIM is sensitive to view angle. Again this is consistent
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with many cells within the inferotemporal cortex (Tanaka 1993).
Olshausen et al. argue that the selection network corresponds to the pulvinar, a sub-
cortical structure that is richly connected to areas of both ventral and dorsal cortex and
which may play a critical role in modulating cortical activation. Consistent with this,
studies of the effects of lesioning the pulvinar in both monkey (Desimone & Ungerleider
1989) and in humans (Rafal & Posner 1987), are associated with problems in visual selec-
tion. The location map in the model may be associated with the posterior parietal cortex,
which holds a spatial map of putative objects in the visual field (see Gottlieb et al. 1998).
In SAIM this map will not specify the identities of stimuli, only their locations. This is
consistent with the general distinction between a ventral visual system concerned with
object recognition (in SAIM the contents and knowledge networks) and a dorsal system
concerned with spatial vision (the selection network and the location map)(Ungerleider
& Mishkin 1982). There is also neuropsychological evidence that the parietal lobe is in-
volved in coding a small number of objects but without specifying their identities. For
instance, patients with ventral brain lesions that spare the parietal lobe can judge rapidly
(in parallel) small numbers of objects present in the visual field but they are impaired at
coding stimulus identities in the same manner; in contrast, parietal lesions leave intact the
parallel coding of stimulus identity but not number (Dehaene & Cohen 1994, Humphreys
& Heinke 1998).
In their analysis of patients with neglect between objects and neglect within objects,
Humphreys & Heinke (1998) used data from lesion overlap to suggest that neglect be-
tween objects was caused by posterior parietal lesions whilst neglect within objects was
linked to more anterior dorsal lesions. These arguments were based on small numbers of
patients, and so caution must be effected in any judgements; nevertheless such a proposal
is consistent with the idea that input from separate objects generates the initial compe-
tition in the selection network, and with outputs from the network being passed to more
anterior dorsal areas (which perhaps represent explicit spatial representations of currently
attended visual information; the FOA). Deficits in the posterior parietal cortex could also
lead to selection becoming ’stuck’ on previously attended objects, creating neglect be-
tween objects as we have shown (Figure 27). The neuroanatomical distinctions made by
Humphreys and Heinke fit with the general idea that contrasting lesions are linked to the
different forms of neglect in SAIM.
Attentional operations in SAIM can also be linked to physiological data on visual selec-
tion. For example, the effect of mapping one area of visual field into the FOA is to ’tune’
the receptive field of template units so that they no longer respond to stimuli across the
retina but only to objects falling within the attended region of space. This is akin to
the findings of Moran & Desimone (1985), who first reported that cells in area V4 of
monkey cortex responded differentially according to whether the animal attended to the
location of a target object. It was as if the receptive field of the cell shrank to fit only
the attended area. We have also shown that ’priming’ a template unit biases selection
towards a stimulus consistent with the unit (Study 2), so that this stimulus can now win
the competition for selection over another item that would otherwise have done so. This
mimics data on attentional priming in area IT. Chelazzi et al. (1993) found that a precue
priming activity in cells in IT, so that these cells then fired more rapidly when a target
was subsequently presented along with a distractor. These authors suggested that the
precue provided a competitive bias favouring cells tuned to the target over those tuned
to the distractor. Template pre-activation in SAIM produces just this effect.
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Our aim in implementing SAIM was not necessarily to provide a model that is accurate
in all respects at a neural level, and there are several aspects of SAIM that are neurally
implausible. For example, an enlarged version of the model, still using only a single scale
for object representation, may require far more connections than is feasible in the brain.
Also, in the version used in the present simulations the FOA was of a fixed (and limited)
retinal size. This is not realistic since, within some limits, people can attend to objects
of varying sizes. Our aim, however, was to show that, even with these constraints, some
of the basic assumptions of SAIM are useful for capturing selective processing in human
vision (particularly competition between units which seek to transform retinal input to
a representation that is translation invariant). The constraints due to the number of
connections needed, and the fixed size of the FOA, may be overcome by future work in
which multi-scale processing is incorporated and in which there are consequently means
of shifting attention in scale as well as in space. The consequences of this require further,
detailed experimentation. For now, the simulations suggest that processes involved in
selection for translation invariant recognition capture many aspects of human attention
in both normality and pathology.
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A The design of SAIM

A.1 The contents network and the FOA

As explained in the main text, SAIM uses one-to-one mapping from the retina to all
locations in the FOA, mediated by the connections between the contents and selection
networks. This allows any arbitrary mapping to be achieved from the retina to the FOA to
generate translation invariance. The following equation describes the mapping produced
through the units in the contents network:

yFOA
ij =

N∑

k=1

N∑

l=1

yV F
kl · ySN

ikjl (1)

Here, yFOA
ij is the activation of units in the FOA, yV F

kl the activation of units in the
visual field and ySN

ikjl the activation of units in the selection network. N is the size of the
visual field. The indices k and l refer to retinal locations and the indices i and j refer to
locations in the FOA. Note that this notation is kept through all of the equations used in
SAIM. Equation 1 shows that units in the contents network were of the ”sigma-pi” type
(Rumelhart & McClelland 1988).

A.2 The selection network

The mapping from the retina to the FOA is mediated by the selection network. In
order to achieve successful object identification, the selection network has to fulfill certain
constraints when it modulates the mapping process. These constraints are that: (i) units
in the FOA should receive the activity from only one retinal unit; (ii) activity of retinal
units should be mapped only once into the FOA; (iii) neighborhood relations in the retinal
input should be preserved in mapping through to the FOA.
In order to satisfy these constraints we used an energy function approach suggested by
Hopfield (1984), where minima in an energy function are introduced at as a network state
in which the constraints are satisfied. In the following derivation of the energy function
parts of the whole function are introduced and each part relates to a particular constraint.
At the end (Sec. A.4) the sum of all parts lead to the complete energy function satisfying
all constraints.
Most parts of the energy function used here are based on the function taken from Mjolsness
& Garrett (1990):

EWTA(yi) = a · (
∑

i

yi − 1)2 −
∑

i

yi · Ii (2)

This energy function defines a winner take all (WTA) behavior, where Ii are the inputs and
yi the outputs of the units. This energy function is minimal when all yi’s are zero except
one yi, and the corresponding Ii has the maximal value of all Iis . The advantage of this
WTA approach over other approaches is the fact that the number of connections between
units increase only linearly, whereas the number of connections, for instance, in the original
formulation of Hopfield (1984) increases quadratically (see Mjolsness & Garrett 1990, for
detailed discussion). For the first two constraints of the selection network this function
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was extended to ”two state winner take all” (WTA2 behavior):

EWTA2(yi) = a · (
∑

i

yi − 1)2 · (
∑

i

yi)
2 −

∑
i

yi · Ii (3)

Here we introduce a second minimum into the energy function with the term (
∑

i yi)
2,

where all units can stay zero. This equation adds a threshold function to the WTA
behaviour, whereby the output activity of the units stays zero as long as the input activity
is below a certain level. With the parameters used in the simulations this threshold
property of the two state winner-take-all equation leads to here having to be at least three
pixels in the visual field in order to activate the network. Furthermore, strong ”vertical”
lesioning (see the main text for details) can lead to a visual field cut. The threshold
property is explored in Study .... Apart from this additional feature, the resulting network
shows the same competitive behavior as the single state WTA network.
Now, to incorporate the first constraint, that units in the FOA should receive the activity
of only one retinal unit, the equation of the ”two state winner-take-all” equation turns
into:

E
(1)
WTA2(y

SN
ikjl) =

∑
ij

(
∑

k,l

ySN
ikjl − 1)2 · (

∑

k,l

ySN
ikjl)

2 (4)

Where the term (
∑

k,l y
SN
ikjl − 1)2 ensures that the activity of only one retinal unit is put

through to FOA units (compare with Equation 2).
To incorporate the second constraint, the ”two state winner-take-all” equation turns into:

E
(2)
WTA2(y

SN
ikjl) =

∑

kl

(
∑
i,j

ySN
ikjl − 1)2 · (

∑
i,j

ySN
ikjl)

2 (5)

Where the term (
∑

i,j ySN
ikjl − 1)2 makes sure that the activity of retinal units is mapped

only once into the FOA (again compare with Equation 2).
So far, the last term of Eqn. 3 (”input term”) has been taken out of Equation 4 and 5.
It is now reintroduced by a common input from the visual field:

Einput(y
SN
ikjl) = −

∑

kl

ySN
ikjl · yV F

kl (6)

For the neighborhood constraint the energy function was based on the Hopfield associative
memory approach:

E(yi) = −
∑

ij
i 6=j

Tij · yi · yj (7)

The minimum of the function is determined by the matrix Tij. For Tijs greater than
zero the corresponding yis and yjs should either stay zero or become active in order to
minimize the energy function. In the associative memory approach Tij is determined by a
learning rule. Here, we chose the Tij so that the selection network fulfills the neighborhood
constraint. The neighborhood constraint is fullfiled when units in the selection network
which receive input from the adjacent units in the visual field, and control adjacent units
in the FOA are active at the same time. Hence, the Tij for these units in Equation 7
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should be greater than zero and for all other units Tij should be less than or equal zero.
This leads to the following equation:

Eneighbor(y
SN
ikjl) = −

∑

i,j,k,l

L∑
s=−L
s 6=0

L∑
r=−L
r 6=0

gsr · ySN
ikjl · ySN

i+r,k+s,j+r,l+s (8)

with gsr being defined by a Gaussian function:

gsr =
1

A
· e− s2+r2

σ2 (9)

where A was set, so that the sum over all gsr is 1.
The effect of gsr is equivalent to the effect of Tij in Eq. 7. However, due to the properties
of gsr, energy is minimized not only by the activation of immediate neighbors (s = −1, r =
−1 , s = 1, r = −1) but also by the activation of units in the selection network controlling
units in FOA which receive input from more widely space pixels in the visual field (all
other values of r and s). Note that activation of these units in the selection network does
not contribute as much as activation from immediate neighbors to minimizing the value
of the energy function, since gsr decreases with greater distance in a Gaussian fashion.
The slope of decrease is determined by σ.

A.3 Knowledge Network

In order to introduce effects of stored knowledge into SAIM, a simple template matching
approach was used. Here, the match between templates and contents of the FOA was
determined using a scalar product as a similarity measure:

I temp
m =

M∑
I=1

M∑
j=1

yFOA∗
ij · wm

ij (10)

Where wm
ij ’s are the templates and M is the size of the FOA. In the knowledge network

the templates are formed from the weights that connect units in the FOA to the template
units (yKN

m ).
Together with the introduction of the knowledge network the visual field was recoded:

yV F∗
kl = 2 · yV F

kl − 1 (11)

This equation transforms the input from the visual field from zeros and ones (yV F
kl ) to

ones and minus ones (yV F∗
kl ). The contents network extracts the contents of the FOA out

of this recoded visual field:

yFOA∗
ij =

N∑

k=1

N∑

l=1

yV F∗
kl · ySN

ikjl (12)

This new FOA code has the advantage that the knowledge network can distinguish be-
tween FOA pixels which correspond to contents of the visual field (ones or minus ones)
and pixels where the selection network has not fully converged or has stayed zero (values
between minus one and one). In the FOA code of the bottom-up version of SAIM, it is
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not possible to distinguish between these two states since a zero FOA pixel can be either
caused by a zero pixel in the visual field or by units in the selection network which stay
zero during network iterations.
A WTA is used to detect the best matching template. The same energy function as in
Eqn. 2 was used with I temp

m as input:

Eknowledge(y
KN
m , yikjl) =

aKN

2
· (

∑
m

yKN
m − 1)2 −

K∑
m

yKN
m · I temp

m (13)

Here K is the number of template units.

A.4 The complete model

The complete energy function of SAIM, which satisfies all constraints, is simply the sum
of the different energy functions:

Etotal(y
KN
m , ySN

ikjl) = a1 · E(1)
WTA2(y

SN
ikjl) + a2 · E(2)

WTA2(y
SN
ikjl) + b2 · Einput(y

SN
ikjl) (14)

+ b1 · Eneighbour(y
SN
ikjl) + b3 · Eknowledge(y

KN
m , ySN

ikjl)

The coefficients of the different energy functions weight the different constraints against
each other.

A.5 Gradient Descent

The energy function defines minima at certain values of yi. To find these values a gradient
descent procedure can be used:

τ ẋi = −∂E(yi)

∂yi

(15)

The factor τ is antiproportional to the speed of descent.
In the Hopfield approach xi and yi are linked together by the sigmoid function:

yi =
1

1 + e−m·(xi−s)

and the energy function includes a leaky integrator, so that the descent turns into:

τ ẋi = −xi − ∂E(yi)

∂yi

(16)

using these two assertion the gradient descent is performed in a dynamic, neural-like
network, where yi can be related to the output activity of neurons, xi the internal activity
and ∂E(yi)

∂yi
gives the input to the neurons.

Applied to the energy function of SAIM, it leads to two sets of dynamic units (neurons),
one in the knowledge network and one in the selection network:

τSN · ẋSN
ikjl = −xSN

ikjl −
∂Etotal(y

KN
m , ySN

ikjl)

∂ySN
i

(17)

τKN · ẋKN
i = −xKN

i − ∂Etotal(y
KN
m , ySN

ikjl)

∂yKN
i

(18)
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For the selection network the gradient descent procedure leads to the following set of
equations:

ẋSN
ikjl = −xSN

ikjl − I−ikjl + b1 · I+
ikjl + b3 · I td

ikjl + b2 · yV F
kl (19)

with

I−ikjl = a1 ·
∂E

(1)
WTA2(y

SN
ikjl)

∂ySN
ikjl

+ a2 ·
∂E

(2)
WTA2(y

SN
ikjl)

∂ySN
ikjl

; I+
ikjl =

∂Eneighbor(y
SN
ikjl)

∂ySN
ikjl

;

I td
ikjl =

∂Eknowledge(y
SN
ikjl, y

KN
m )

∂yikjl

= yV F∗
kl ·

K∑
m

wm
ij · yKN

m

The input into the units in the selection network consists of inhibitory input I−ikjl, excita-

tory input I+
ikjl and top-down modulation I td

ikjl.
For the knowledge network the gradient descent procedure results in the following equa-
tion:

ẋKN
m = −xKN

m − aKN · (
K∑
m

yKN
m − 1) + I temp

m (20)

In order to perform the gradient descent and to simulate the behaviour of SAIM on a
computer, a temporally discrete version of the descent procedure was implemented on a
computer. This was done by using a trapezium approximation (Press 1992), where for
each unit in the model the following equation was iterated:

x(t) = e
−T0

τ · x(t− 1) +
T0

2τ
· (e−T0

τ · I∗(t− 1) + I∗(t− 2))

T0 is the step size, I∗ the input into the unit and t the iteration step.

A.6 Attention Switching

In order to implement attentional switching, a ”location map” was computed based on
activity in the selection network:

yLM
kl =

M∑
i=1

M∑
j=1

ySN
ikjl (21)

When a template unit in the knowledge network passes a threshold θ, the location map
is used to reduce the activity in the visual field:

yV F
kl (new) = yV F

kl (old) · (1− aIR · yLM
kl ) (22)

aIR controls the amount of inhibition. As explained in the main text, this leads to a spatial
inhibition of return. All units in the selection network and the knowledge network are
set to the initial state they had at the beginning of the simulation. In addition, a second
form of inhibition reduces the influence from the original template of the winning unit.
The term I temp

m in equation 20 is multiplied by a factor (1 − aIT ), where aIT determines
the amount of template inhibition.
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A.7 Cueing Studies

SAIM was originally not designed to operate with temporally changing input. In par-
ticular, this dynamic input would violate the basic assumption of the underlying theory
of energy functions, where inputs have to be constant (e.g. Glendinning 1995). In or-
der to maintain the proper operation of SAIM, cueing was implemented by introducing
a smooth transition to a stimulus offset and onset. The smooth transition for an offset
was implemented by multiplying the activity of the offsetting stimulus with e−τ1·t∗ , where
t∗ is the number of iterations after offset. For the onset the stimulus was multiplied by
(1 − e−τ2·t∗). t∗ is number of iterations from the onset of the stimulus. In most studies
the speed of the offset (τ1) and the speed of the onset (τ2) were set to 0.02. In Study 13
the speed of the cue offset (τ1) was set to 0.7 (large decay), 1.5 (medium decay) and 5.0
(short decay).

B Lesion

SAIM was lesioned in the following way:

ẋSN
ikjl = −xSN

ikjl + dikjl · (−I−ikjl + b1 · I+
ikjl) + b3 · I td

ikjl + b2 · yV F
kl

dikjl is the lesioning factor and its values ranged from 0 to 1, where 0 indicates a strong
lesion and 1 no lesion. As explained in the main text, the lesion was only applied to
connections within the selection network.
Different spatial patterns of lesions were used in the study. All lesions can be described
with the following equation:

dikjl =

{
d1 + m1 · k

N−1
0 < i ≤ M − h− 1

d2 + m2 · k
N−1

M − h− 1 < i < M − 1
(23)

N is the size of the visual field. M is the size of the FOA. m1, m2 are the gradients of the
lesion from left to right in the visual field. d1, d2 are the lesions of the left most pixels
in the visual field. The indices 1 and 2 indicate the application of the lesions to different
parts of the selection network. Index 1 stands for the part of the selection network which
controls the left part of the FOA and index 2 relates to the part of the selection network
which controls the right section of the FOA. The parameter h determines the selection
layer effected in terms of the corresponding FOA pixels where the switch from index 1 to
index 2 occurs. Note that dikjl is independent of the indices j and l so that lesioning is
applied homogeneously from the top to the bottom of the visual field and the FOA. For
the different types of lesion, the lesioning parameters were set to different values. The
parameters are given in the following section.

C Parameters

C.1 Model

In most studies the following parameters were used: s = 1, m = 40, sKN = 1.3, mKN = 60,
aKN = 10, τKN = 35.0, a1 = 2.0, a2 = 1.5, b1 = 15, b2 = 1.25, b3 = 3.0, τ = 1.0, σ = 7.0,
L = 3, N = 16, M = 7 and T0 = 0.005. For the attentional switching the parameters
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were set to: aIR = 0.05, θ = 0.9 and aIT = 0.2.
In Study 6 the following parameters were modified: sKN = 50, mKN = 0.7, τKN = 200.0,
a1 = 10.0, b2 = 0.7, b3 = 600.0. The main objective of Study 6 was to show that
SAIM is capable of suppressing overlapping parts of ignored objects. In order to achieve
this suppression, the top-down influence (b3) had to be increased, so that the knowledge
network can suppress parts in the FOA that do not match the winning template. This
led to an increase of excitatory activation in the selection which, subsequently, had to be
compensated by an increase of inhibition in the selection network (a1) and by a reduction
of dynamics in the knowledge network (τKN , mKN and sKN).

C.2 Lesions

The studies used two different spatial pattern of lesioning: vertical lesions and horizontal
lesions. For vertical lesions the damage was homogeneous with respect to the FOA, so
that the lesion did not unbalance processing across different FOA pixels. Hence, h was
set to zero. However, since the vertical lesion yields unbalanced processing with respect
to the visual field, m1 and d1 have not to be zero. Study 7 and 10 used the parameters
d1 = 0.1, m1 = 0.9. In Study 13 the parameters were set to d1 = 0.1 and m1 = 0.9
for large damage; d1 = 0.2 and m1 = 0.8 for medium damage; d1 = 0.3 and m1 = 0.7
for slight damage. The horizontal lesion yielded unbalanced processing in the selection
network with respect to the FOA, but left processing balanced with respect to the visual
field. Hence, m1 and m2 were set to zero and h became none zero. For the horizontal
lesion h was always set to 4 and d2 to 1. For Study 9, 10, 13 d1 was set to 0.8. For
the combination of the two types of lesioning, h was set to 4 in order to maintain the
characteristics of the horizontal lesion. In Study 8 d2 was set to 1 and m2 to 0. The
lesioning parameters of Study 11 were d1 = 1.0, m1 = 0.6, d2 = 0.6, m2 = 0.3. For Study
12 h was increased from 4 to 5 and d1 was set to 0.3.


