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We present an extension of the Selective Attention for Identification model (SAIM)
[1] in which feature extraction processes are incorporated. We show that the new
version successfully models experimental results from visual search. We also predict
the influence of a target cue on search. This extended version of SAIM may provide
a powerful framework for understanding human visual attention

1. Introduction

Recently, we have presented a connectionist model of human visual at-
tention, termed SAIM (Selective Attention for Identification Model) [1].
SAIM’s behaviour is dominated by interactions between processing units
within and between modules compete to control access to stored represen-
tations for object recognition. SAIM provides a qualitative account of a
range of psychological phenomena on both normal and disordered atten-
tion. Simulations on normal attention match psychological data on: two-
object costs on selection, effects of object familiarity on selection, global
precedence, spatial cueing both within and between objects, and inhibition
of return. When simulated lesions were conducted, SAIM also demon-
strated both unilateral neglect and spatial extinction, depending on the
type and extent of the lesion. Different lesions also produced view-centred
and object-centred neglect, capturing the finding that both forms of ne-
glect can occur within a single patient. In essence, SAIM suggested that
attentional effects in human behaviour result from competitive interactions
in visual selection for object recognition, whilst neurological disorders of
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selection are due to imbalanced competition following damage to areas of
the brain modulating access to stored knowledge.
In this paper we present an extended version of SAIM in which a fea-
ture extraction process was added whilst at the same time maintaining
the basic principles of SAIM, (e.g. competitive interactions and selection
mechanism). Our aim here is to demonstrate that this new version still
successfully performs translation-invariant object identification. Addition-
ally, we assess the viability of ’extended SAIM’ as a psychological model,
testing whether it can simulate and explain data from human visual search
tasks.
Visual search is a commonly-used paradigm in psychological studies of at-
tention in which participants are asked to report the absence or presence
of a specified target item amongst irrelevant items (distractors). Typically,
performance is measured in terms of time until response (reaction time).
The number of distractors is varied across trials. A typical outcome of
many experiments is a linear function between reaction time and num-
ber of distractors. The slope of this linear relation is often interpreted as
an indicator of the underlying search mechanism. For instance, a small
slope (0-10ms/item) is interpreted as parallel search and a steep slope (20-
50ms/item) is assumed to indicate serial search, based on one item at a
time (see [2], for a recent review).

2. SAIM

2.1. Overview

Figure 1 gives an overview of SAIM’s architecture and highlights the mod-
ular structure of SAIM with each module.
In the first stage features are extracted from the input image (the feature
extraction process). The contents network maps a section of the features
into a smaller Focus of Attention (FOA), a process modulated by spatial
attention. In addition the mapping of the contents network into the FOA is
translation-invariant, enabling SAIM to perform translation-invariant ob-
ject recognition. The selection network controls the contents network by
competitive interactions between its processing units, so that input from
only one (set of) locations is dominant and mapped into the FOA. At the
top end of the model, the knowledge network identifies the contents of the
FOA using template matching. The knowledge network also modulates the
behaviour of the selection process with top-down activation, so that known
objects are preferred over unknown objects. In addition to these modules,
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Figure 1. Architecture of SAIM

there is also a location map that enables SAIM to make multiple selections.
Essentially units in the location map store the object position each time an
object is recognized and then inhibits the selection network from reselecting
these locations (inhibition of return).
The design of SAIM’s network follows the idea of soft constraint satis-
faction in neural networks based on ”energy minimization” [3]. In SAIM
the ”energy minimization” approach is applied in the following way: Each
module in SAIM performs a pre-defined task (e.g. the knowledge network
has to identify the object in the FOA). In turn each task describes allowed
states of activation in the network. These states then define the minima
in an energy function. To ensure that the model as a whole satisfies each
constraint, set by each network, the energy functions of each network are
added together to form a global energy function for the whole system. The
minima in the energy function is found via gradient descent, as proposed
by [3]. In the following sections the energy functions for each network are
stated. The global energy function and the gradient descent mechanism are
omitted, since they are clearly defined by the subcomponents of the energy
function.

2.2. Feature extraction

The feature extraction results in a three-dimensional feature vector: hor-
izontal and vertical lines and the image itself. The lines are detected by

filtering the image with 3x3 filters (
−2 +1 −2
−2 +1 −2
−2 +1 −2

for vertical lines and its
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transposed version for horizontal lines). The feature vector is noted as fn
ij

hereafter, with indices i and j refereing to retinal locations and n to the
feature dimension. This feature extraction process provides an approxima-
tion of simple cell responses in V1. As becomes obvious in the following
sections, the use of just this simple feature extraction is not of theoretical
value and arises only from practical consideration (e.g., the duration of any
simulations). In principle, a more biologically realistic feature extraction
process can be substituted (e.g. Gabor filter).

2.3. Contents network

The energy function for the contents network is:

ECN (ySN,yCN) =
∑

ijlm

(yCN
lmn − fn

ij)
2 · ySN

lmij (1)

ySN
lmij is the activation of units in the selection network and yCN

lmn is the
activation of units in the contents network. Here and in all the following
equations the indices i and j refer to retinal locations and the indices l

and m refer to locations in the FOA. The term (yCN
lmn − fn

ij)
2 ensures that

the units in the contents network match the feature values in the input
image. The term ySN

lmij ensures that the contents of the FOA only reflect
the region selected by the selection network (ySN

lmij = 1). Additionally, since
setting an arbitrary choice of ySN

lmijs to 1 allows any location to be routed
from the feature level to the FOA level, the contents network enables a
translation-invariant mapping.

2.4. Selection network

The mapping from the retina to the FOA is mediated by the selection
network. In order to achieve successful object identification, the selection
network has to fulfill certain constraints when it modulates the mapping
process. These constraints are that: (i) units in the FOA should receive
the activity from only one retinal unit; (ii) activity of retinal units should
be mapped only once into the FOA; (iii) neighbourhood relations in the
retinal input should be preserved in mapping through to the FOA. Now,
to incorporate the first constraint, that units in the FOA should receive
the activity of only one retinal unit, the equation of the WTA-equation
suggested by [4] turns into:

ESN1
WTA(ySN) =

∑

ij

(
∑

lm

ySN
lmij − 1)2 (2)
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Figure 2. Basic behaviour of new SAIM.

The second term implements the second constraint:

ESN2
WTA(ySN) =

∑

lm

(
∑

ij

ySN
lmij − 1)2 (3)

In both terms the expression (
∑

ySN
ikjl− 1)2 ensures that the activity of one

location is mapped only once into the FOA.
The energy following energy function implements the neighbourhood con-
straint:

ESN
neighbor(y

SN) = −
∑

i,j,l,m

L∑
s=−L

s 6=0

L∑
r=−L

r 6=0

gsr · ySN
lmij · ySN

i+r,k+s,j+r,l+s (4)
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with gsr being defined by a Gaussian function:

gsr =
1
A
· e− s2+r2

σ2 (5)

where A was set, so that the sum over all gsr is 1. When units linked via gsr

are activated to ySN
lmij = 1, the energy is smaller than when these units have

different values, e.g. zero and one. Since gsr connects units that relate to
adjacent locations in both the FOA and the input image, this implements
the neighbourhood constraint.
To implement inhibition of return, the location map prevents the reselection
of an inhibited location through the following energy function:

ESN3(ySN) = −
∑

lmij

(1−
∑

lm

yLM
ij )ySN

lmij (6)

The term (1−yLM
ij ) suppresses already-selected locations and supports the

selection of new locations.

2.5. Knowledge network

The energy function of the knowledge network is defined as

EKN (yKN,yCN) = aKN (
∑

k

yKN
k − 1)2 − bKN

∑

lmn

(yCN
lmn − wk

lmn)2yKN
k (7)

The index k refers to template units whose templates are stored in their
weights (wk

lmn). The term (
∑

k yKN − 1)2 restricts the knowledge network
to activate only one template unit. The term

∑
lmn(yCN

lmn − wk
lmn)2 · yKN

k

ensures that the best-matching template unit is activated. aKN and bKN

weight these constraints against each other.

2.6. Rechecking

In order to implement rechecking, a ”location map” is computed based on
activity in the selection network:

yLM
ij = yLM

ij (old) + aIR
M∑

l=1

M∑
m=1

ySN
lmij (8)

When a template unit in the knowledge network passes a threshold θ, the
location map is used to reduce the activity in the visual field. aIR controls
the amount of inhibition. All units in the selection network and the knowl-
edge network are set to the initial state they had at the beginning of the
simulation.
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3. Results and discussion

3.1. Basic behaviour

Template activation
in knowledge network:
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Figure 3. The simulation shows how higher initial values for the crossover comes the
bottom-up bias for the two (see Fig. 2). The input image was the same as in Fig. 2

Fig. 2 demonstrates the basic behaviour of the new version of SAIM,
when presented with two objects (a two and a cross). It shows that both
objects are selected in a serial manner, in this case the two followed by the
cross. Similarly to SAIM version 1 [1]there was a bottom-up preference
towards a certain objects, here the two. This bottom-up preference results
from a combination of the dynamics of the selection network and the feature
extraction. We do not claim psychological plausibility for the two being
preferred in selection over the cross, but it does illustrate asymmetries
in bottom-up bias in the model. Fig. 3 shows that the bottom-up bias
can be altered by giving the cross-template a higher initial value. This
higher activation filters through the selection network via the top-down
modulation (see Fig. 1). The top-down bias was used in simulations of
visual search tasks where SAIM was required ”to look for a target”.

3.2. Visual Search

Fig. 4 shows that the new version of SAIM is capable of simulating typi-
cal results of visual search experiments (see [2] for examples), with linear
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Figure 4. Two simulation results with ”L” as target and ”T” as distractor (top) and
vice versa (bottom). The results are compatible with experimental evidence.

increases in the search functions and absent responses being lower than
present responses. In these simulations each time a distractor was selected
a recheck was performed with a given probability, in order to minimize
target misses. Rechecking stoped entirely when either the target is found
or all items were selected. The linear increase of SAIM’s reaction time
originates from two factors: First the time to select an item increased with
the number of items, reflecting increased competition for selection. Sec-
ond the number of rechecks increased with the number of items, since the
probability of missing a target increases with the number of items. Fig. 5
shows the successful simulation of a search asymmetry [5], where a tilted
line amongst horizontal lines is quicker than a vertical line amongst tilted
lines. There is a bottom-up bias favouring the tilted line, which can only
be overcome by top-down bias from the knowledge network. In SAIM the
asymmetry stems from the fact that the time to select an item increases
when top-down knowledge has to override a bottom-up bias. The increase
results from the fact that the top-down bias from the knowledge network
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Figure 5. Simulation of a search asymmetry. Search for a tilted line amongst vertical
lines is ”parallel’ (8.3ms/item), whereas search for a vertical line target amongst tilted
lines produces a ”serial” search (71.5 ms/item).

has to propagate through the contents network to the selection network.
This leads to delayed resolution of activation in the selection network, after
the network first follows its bottom-up preference to the distractor.

3.3. Prediction and Experiment
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Figure 6. Effects of varying the initial activation of templates units for ”T” as target
and ”L” as distractor. The results show that the search slope (numbers on the right to
the graphs) decreased with increasing initial values.

In a series of simulations we tested the influence of the top-down bias
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introduced by varying the initial activation values of template units in the
knowledge network. Fig. 6 shows that the search slope decreased with
increasing initial activation values. This pattern results from the fact that
an increasing top-down bias leads to a decrease of the selection time and
an increase of the hit-rate of finding the target, reducing the amount of
rechecking. We assumed that the influence of the initial value can be con-
strued as the influence of a cue preceding search displays; the cue ”sets”
initial values. Search is quicker when the cue ”sets” the system for the
target than when the cue ”sets” an alternative item. We have confirmed
this prediction in an experiment on human subjects [6].

4. Conclusion

We have demonstrated that SAIM can be successfully extended to include
a feature extraction process. This new version can simulate typical results
from visual search experiments. It also made a prediction about effects of
top-down priming of search, that we confirmed empirically. The model may
provide a powerful framework for understanding human search. In future
work we will aim at replacing the present feature extraction by a more
biological approach (e.g. using a Gabor filter) and at capturing recent
evidence suggesting that grouping interacts with attentional processes [7].
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