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Abstract. We recently presented a computational model of object recog-
nition and attention: the Selective Attention for Identification model
(SAIM) [1–7]. SAIM was developed to model normal attention and at-
tentional disorders by implementing translation-invariant object recogni-
tion in multiple object scenes. SAIM can simulate a wide range of exper-
imental evidence on normal and disordered attention. In its earlier form,
SAIM could only process black and white images. The present paper
tackles this important shortcoming by extending SAIM with a biologi-
cally plausible feature extraction, using Gabor filters and coding colour
information in HSV-colour space. With this extension SAIM proved able
to select and recognize objects in natural multiple-object colour scenes.
Moreover, this new version still mimicked human data on visual search
tasks. These results stem from the competitive parallel interactions that
characterize processing in SAIM.

1 Introduction

Recently, we presented a computational model, termed SAIM (Selective At-
tention for Identification Model; [1–7]). SAIM was developed to model normal
attention and attentional disorders by implementing translation-invariant object
recognition in multiple object scenes. In order to do this, a translation-invariant
representation of an object is formed in a ”focus of attention” (FOA) through
a selection process. The contents of the FOA are then processed with a simple
template-matching process that implements object recognition. These process-
ing stages are realized by non-linear differential equations often characterized
as competitive and cooperative interactions between neurons (e.g. [8]). With
these mechanisms SAIM can model a wide range of experimental evidence on
attention and its disorders (see [9] for a discussion). These results include: costs
on selection from having multiple objects present [10], the facilitatory effects of
object familiarity on selection [11], global precedence [12], spatial cueing both
within and between objects [13, 14], and inhibition of return [15]. When simu-
lated lesions were conducted, SAIM also demonstrated both unilateral neglect



and spatial extinction, depending on the type and extent of the lesion. Differ-
ent lesions also produced view-centred and object-centred neglect [16], and both
forms of neglect could even be simulated within a single patient (see [17] for
evidence). It is beyond the scope of this paper to describe in details these exper-
imental findings and how SAIM simulated the data. In essence, though, SAIM
suggested that attentional effects in human behaviour resulted from competitive
interactions in visual selection for object recognition, whilst neurological disor-
ders of selection can be due to imbalanced spatial competition following damage
to areas of the brain modulating access to stored knowledge.
However, in these simulations SAIM only processed black and white input im-
ages. This limitation questions the viability of SAIM as a general model for the
human visual system. The aim of this paper is to demonstrate that SAIM is ca-
pable of processing natural images by adding an appropriate feature extraction
while maintaining the central concepts of the model, such as filtering images
through a focus of attention and using competitive interactions between stimuli
to generate selection and recognition (see Fig. 1 for examples of the natural im-
age used here). As these elements are essential for SAIM’s earlier successes, it is
likely that the new version presented here will still model the effects captured
by previous versions.
There are other attentional models being capable of processing natural scenes,

Fig. 1. Examples of the natural colour images used in this paper.

most notably the saliency-based model by Itti and Koch [18–20]. The Itti and
Koch model focuses on modeling behavioral data from visual search tasks. Visual
search task is a commonly-used paradigm in attention research in which partic-
ipants are asked to report the absence or presence of a specified target item
amongst irrelevant items (distractors). The performance of the participants is
measured in terms of time until response (reaction time). The number of dis-
tractors is varied across trials. The typical outcome of such experiments is a
linear relation between reaction time and number of distractors. The slope of
this linear relation varies with characteristics of the items in the search display
and is often interpreted as an indicator for the underlying search mechanism
(see [21], for a recent review). To model experimental evidences from visual
search tasks, the Itti and Koch model computes a saliency map from an input
image in three stages: In the first stage, early visual feature extraction, seven



types of feature maps are calculated: intensity contrast, red-green double op-
ponency, blue-yellow opponency and four orientation selective maps based on
Gabor-filters. In the second stage the maps of the three feature pathways (in-
tensity, colour and orientation) are combined into three separate ”conspicuity
maps”. The conspicuity maps show high activation at locations where untypical
feature values are found, e.g. the image location of a tilted bar amongst vertical
bars would receive a high activation value in the orientation conspicuity map.
In the third stage the three conspicuity maps are linearly combined into the
saliency map. The saliency map guides a serial search scan for the search target,
with the scan starting at the location with the highest salient value and visiting
locations in an order of descending saliency values. The content of each location
is compared with the search target and if it matches, the search is terminated.
In order to simulate experimental data from visual search [19] the number of
serial search steps are related to human reaction times.
SAIM has also been shown to be able to simulate data from visual search tasks
[2, 4]. In this case, search efficiency is determined by from interactions between
SAIM’s object recognition system with the competitive selection mechanisms.
However, as with earlier versions of SAIM, these results were based on artifi-
cial black and white pixel images, lacking realistic properties of natural scenes.
Moreover, these versions of SAIM did not possess biologically plausible feature
extraction as is done by the saliency-based approach of Koch and Itti. The cur-
rent paper presents an extension of SAIM which contains a biologically plausible
feature extraction, and which uses a more flexible template matching process
than before. We demonstrate that this extension is capable of mimicking results
from visual search tasks with natural images as inputs.

2 SAIM

2.1 Overview

Figure 2 gives an overview of SAIM’s architecture. In a first stage of processing,
features are extracted from the input image. In an earlier version of SAIM only
horizontal and vertical lines were used in the feature extraction [4]. The current
version extends the feature extraction processes to include intensity, colour and
orientation. This creates a more biologically plausible feature extraction, while,
at the same time, it also allows SAIM to process successfully natural images,
as we will show here. The contents network then maps a subset of the features
into a smaller Focus of Attention (FOA). This mapping of the contents network
into the FOA is translation-invariant and is gated by activity from all image
locations competing through the selection network to gain control of units in
the FOA. The selection network controls the contents network by competitive
interactions between its processing units, so that input from only one (set of)
locations is dominant and mapped into the FOA. At the top end of the model, the
knowledge network identifies the contents of the FOA using template matching.
The knowledge network also modulates the behaviour of the selection network
with top-down activation, with known objects preferred over unknown objects.
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Fig. 2. Architecture of SAIM

The design of SAIM’s network follows the idea of soft constraint satisfaction in
neural networks that use ”energy minimization” techniques [22]. In SAIM the
”energy minimization” approach is applied in the following way: Each module in
SAIM carries out a pre-defined task (e.g. the knowledge network has to identify
the object in the FOA). In turn each task describes allowed states of activation
in the network. These states then define the minima in an energy function. To
ensure that the model as a whole satisfies each constraint, set by each network,
the energy functions of each module are added together to form a global energy
function for the whole system. The minima in the energy function are found via
gradient descent, as proposed by [22]:

τ ẋi = −∂E(y)
∂yi

(1)

whereby yi is the output activation of an unit and xi the internal activation of
an unit. The factor τ is antiproportional to the speed of the gradient descent. In
the Hopfield approach xi and yi are linked together by the sigmoid function:

yi =
1

1 + e−m·(xi−s)

and the energy function includes a leaky integrator, so that the descent turns
into:

τ ẋi = −xi − ∂E(y)
∂yi

(2)



2.2 Contents network

The contents network aims at enabling translation-invariant mapping from input
image to the FOA. This is implemented through the following energy function:

E
(
yCN,ySN

)
=

∑

lmij

(∑
s,r

∑
n

(
yCN

l+s,
m+r,n

− fn
i+s,
j+r

)2
)

(
ySN

lmij

)q
(3)

ySN
lmij is the activation of units in the selection network and yCN

lmn is the activation
of units in the contents network. Here and in all the following equations the
indices i and j refer to retinal locations and the indices l and m refer to locations
in the FOA. fn

ij is the output of the feature extraction with n noting the featural
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the contents network match the feature values in the input image. The term(
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ensures that the contents of the FOA only reflect the region selected

by the selection network (ySN
lmij = 1). Additionally, since setting an arbitrary

choice of ySN
lmijs to 1 allows any location to be routed from the feature level to

the FOA level, the contents network enables a translation-invariant mapping.
The gradient descent with respect to yCN

lmn defines the feedforward connections
from feature extraction to FOA:
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The gradient descent with respect to ySN
lmij defines the feedback connections from

FOA to selection network:
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Note that these feedback connections implement a matching between FOA con-
tents and the features extracted from the input image. In fact, the matching
results form the input into the selection network which guides the selection net-
work towards choosing location input image that match well features represented
in the FOA.

2.3 Selection network

The mapping from the retina to the FOA is mediated by the selection network.
In order to achieve successful object identification, the selection network has to
fulfill certain constraints when it modulates the mapping process. These con-
straints are that: (i) units in the FOA should receive the activity from only one
retinal unit; (ii) activity of retinal units should be mapped only once into the
FOA; (iii) neighbourhood relations in the retinal input should be preserved in



Fig. 3. Illustration of connections between units of the selection network. For simplicity
the illustration depicts the selection network for a one-dimensional input image and
one-dimensional FOA. A layer (row of units) controls the activation of one FOA unit
via the contents network. A column in the selection network corresponds to a location
in the input image. There are three types of connections within the selection network:
two inhibitory connections depicted as lines within a layer and a column and excitatory
connections depicted as slanted arrows. (see text for details).

mapping through to the FOA. As we will show, these three constraints imple-
ment three types of connections illustrated in Fig. 3. Now, to incorporate the
first constraint, that units in the FOA should receive activity from only one lo-
cation in input image unit, the equation of the WTA-equation suggested by [23]
turns into:

ESN1
WTA(ySN) =

∑

ij

(
∑

lm

ySN
lmij − 1)2 (6)

The second term implements the second constraint:

ESN2
WTA(ySN) =

∑

lm

(
∑

ij

ySN
lmij − 1)2 (7)

In both terms the expression (
∑

ySN
ikjl − 1)2 ensures that the activity of one

location is mapped only once into the FOA.
For the neighborhood constraint the energy function was based on the Hopfield
associative memory approach:

E(y) = −
∑

ij
i6=j

Tij · yi · yj (8)

The minimum of the function is determined by the matrix Tij . For Tijs greater
than zero the corresponding yis and yjs should either stay zero or become active
in order to minimize the energy function. In the associative memory approach
Tij is determined by a learning rule. Here, we chose the Tij so that the selection
network fulfills the neighborhood constraint. The neighborhood constraint is
fulfilled when units in the selection network which receive input from the adjacent



units in the visual field, and control adjacent units in the FOA are active at the
same time. Hence, the Tij for these units in Equation 8 should be greater than
zero and for all other units Tij should be less than or equal zero. This leads to
the following equation:

ESN
neighbor(y

SN) = −
∑

i,j,l,m

L∑
s=−L

s6=0

L∑
r=−L

r 6=0

gsr · ySN
lmij · ySN

i+∆·r,k+∆·s,j+∆·r,l+∆·s (9)

with gsr being defined by a Gaussian function:

gsr =
1
A
· e− s2+r2

σ2 (10)

where A was set, so that the sum over all gsr is 1. When units linked via gsr are
activated to ySN

lmij = 1, the energy is smaller than when these units have different
values, e.g. zero and one. In the versions of SAIM gsr connected units that relate
to adjacent locations in both the FOA and the input image, implementing the
neighbourhood constraint. In the current version the neighbourhood relationship
with respect to the input image is modulated by the parameter ∆. With this
modification SAIM maps every ∆th-pixel from the input image into the FOA.
Initially, this subsampling was introduced for practical reasons, as the objects
used here span a region of around 30 by 30 pixels and it would have not been
feasible to use a FOA of 30x30 pixels for computer time. Interestingly, this type
of subsampling also introduces some kind of robustness into SAIM’s processing
of natural images, as we will discuss at the end of this paper.

2.4 Knowledge network

The knowledge network aims at recognizing the object in the FOA by matching
the contents of the FOA with the templates stored in the knowledge network. Due
to the subsampling introduced in the selection network, the template consists of
a grid placed over an object (see Fig. 4 for examples). At each grid point the
features of the location in the object are stored in the template weights. The
features are generated by the feature extraction specified in the next section.
Importantly, not every grid point is located on a object pixel. For these grid
points, subsequently termed ”background” (bg), the template weights are set to
zero to mark them as non-object grid points. In order to distinguish these grid
points from object template pixels, the range of feature values was set to be
larger than 0.
The energy function of the knowledge network is defined as

EKN (yKN,yCN) = aKN (
∑

k

yKN − 1)2 −

bKN ·
∑

klmn

{
0 If wk

lmnis ”bg”
(yCN

lmn − wk
lmn)2 · yKN

k

Nk
otherwise

(11)



The index k refers to template units whose templates are stored in their weights
(wk

lmn). The term (
∑

k yKN − 1)2 restricts the knowledge network to activate

only one template unit. The term
∑

lmn(yCN
lmn − wk

lmn)2 · yKN
k

Nk
ensures that the

best-matching template unit is activated whereby Nk is the number of object
grid points. The normalization ensures that the matching value is independent
of the number of object pixels. aKN and bKN weight these constraints against
each other. The exclusion of the background pixels from the matching function
takes into account the fact that feature values at those locations do not belong
to objects and are therefore not relevant for the quality of the fit. As will be ex-
plained below, the introduction of the background pixels also required to modify
the original gradient descent with respect to yCN:

∂E(yKN,yCN)
∂yCN

lmn

= bKN ·
∑

klmn

{
0 If wk

lmnis ”bg”
2 · (yCN

lmn − wk
lmn) · yKN

k otherwise

This feedback from the knowledge network leads into the contents network leads
to the effect that FOA-pixels are not affected by background pixels. However,
in order for the selected region to fit the object shape, the selection network via
the contents network need to be influenced by background pixels. This can be
achieved by the following, modified feedback:

fb = bKN ·
∑

klmn





2 · (yCN
lmn − wk

lmn) · yKN
k If wk

lmnis ”bg” & yKN
k > Θ

0 If wk
lmnis ”bg” & yKN

k ≤ Θ
2 · (yCN

lmn − wk
lmn) · yKN

k otherwise
(12)

With this modification the feedback behaves so long as the activation of the
template unit (yKN

k )is smaller than Θ. However, as soon as yKN
k is larger than

Θ is forced to converge to zero, since wk
lmn as a background pixel is zero. The

passing of Θ is interpreted as the knowledge network having recognized a selected
object. The convergent of features value in the contents network towards zero
leads to a suppression of activation in the corresponding layers of the selection
network. This results from the fact that all feature values are larger than zero
(see Feature extraction) and, therefore, the input of the selection network is
highly negative, suppressing the activation in the layers of the selection network.
Consequently, the selected locations form the shape of the object.

2.5 Feature extraction

The feature extraction extracted from an input image are intensity, colour and
orientation, similar to the feature extraction in Itti and Koch’s model. However,
different from their model, no conspicuity map or saliency map is calculated
from the feature maps. Instead, the feature extraction feeds into the selection
network and the contents network.
The input image to the feature extraction is a RGB-image (rij , gij , bij) and the
output are feature vectors noted as fn

ij , whereby the indices i and j refere to
image locations and n to the feature dimension. A constant (const) is added to



each feature dimension in order to allow the knowledge network to distinguish
between deselected pixels and selected pixels (see Knowledge Network). The first
feature dimension is intensity:

f
(1)
ij = (rij + gij + bij)/3 + const (13)

For the feature dimension ”colour”, the RGB-image is transformed into the HSV
colour space (hue-saturation-value), as the HSV space is a good approximation
of the way humans perceive colour [24]:

h =





60 · g−b
Max−Min + 0, if Max = r and g ≥ b

60 · g−b
Max−Min + 360, if Max = r and g < b

60 · b−r
Max−Min + 120, if Max = g

60 · r−g
Max−Min + 240, if Max = b

(14)

s =
Max−Min

Max
(15)

v = Max (16)

whereby Max and Min are the maximum and minimum of the RGB-values,
respectively. HSV-values represent positions in the HSV-space in cylindric co-
ordinates with h being an angle and s and v a length ranging from 0.0 to 1.0.
SAIM uses euclidian distances for template matching, thus, cartesian coordinates
are more suitable for representing colour. The following equation transforms the
cylindric coordinate into cartesian coordinates:

f
(2)
ij = vij + const (17)

f
(3)
ij = sij · sin(hij) + 1 + const (18)

f
(4)
ij = sij · cos(hij) + 1 + const (19)

In order to extract orientation information from the input image Gabor filters
are used:

G(x, y, λ, θ) =
1√

2πσ2
exp(−x2 + y2

2σ2
) exp(2πλi(x cos θ + y sin θ)) (20)

where θ is the orientation. σ is the standard deviation of Gaussian envelope
and λ is the spatial frequency of the filter. This filter is used as it is generally
accepted that Gabor-filter are good approximation of receptive fields in V1. We
filter 8 orientations (0, 22.5, 45, 67.5, 90, 112.5, 135, 157.5), as these are the
orientation of the receptive fields in V1. Therefore, the last 8 feature dimensions
are the intensity image filtered with the Gabor-filters in 8 orientations and to
each filter result the positive constant const is added to ensure that those feature
dimensions are larger than zero as well.



Fig. 4. Templates: Object 1 (left) and Object 2 (right). The crosses mark locations
in the object that are used to extract feature values for the templates. The dots are
”background pixels”.

3 Simulation results

3.1 Input images and templates

Fig. 1 shows examples of the pictures used in the simulations. The pictures were
used by one of the authors in earlier work (e.g. [25]). Two objects of similar
size were placed by hand onto different backgrounds at different locations. Even
though an effort was made to keep the orientation, lighting, colour and size of
the objects constant, as can be seen from the examples, variations occurred and
images exhibited natural noise. To simulate visual search the original images
were not suitable, because the images did not contain the same object more
than once, which is necessary to simulate visual search. Therefore, additional
objects were inserted with the help of a graphics tool (see Fig. 6 for examples).
We generated scenes with 2, 3 and 4 object, with the number of objects limited
by the image size. The aim of this paper is to show that, in principle, SAIM is
capable of simulating results of visual search tasks with natural images, so this
limitation is not crucial to testing the proof of principle.
Fig. 4 shows the two templates (Object 1 and Object 2) used in simulations in
this paper. The templates were cropped from two images and were used through
out the simulations described in this paper.

3.2 Results

Figure 5 shows two examples of simulation results. The examples demonstrate
that, in principle, the new version of SAIM is capable of processing natural
images. In Figure 5a SAIM successfully selected Object 1 from a textured back-
ground. Fig. 5b shows that for a scene with two known objects in front of a
textured background SAIM successfully selected one of the two objects, Object
2. SAIM selected Object 2, because it matched better the corresponding tem-
plate than the template of Object 1. In both simulations SAIM’s knowledge
network correctly identified the selected object. Figure 5a also illustrates that
SAIM appears to be robust against variations in these scenes, as Object 1 is
slightly titled to the right and SAIM still successfully identifies the object. This
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Fig. 5. Two examples of simulation results. The crosses in the left images indicate the
image locations SAIM selected. The plots on the right show the time course of the
activation of the templates in the knowledge network. The time scale is arbitrary, but
can be interpreted as milliseconds.

is due to the subsampling introduced in the selection network. For instance, the
template grid points are still positioned on the (yellow) bat matching its colour,
even though the exact position in the original template slightly different.
Figure 6 shows that SAIM captures the essential aspect of experimental findings
in visual search tasks that the slope of the search function (reaction time over
number of items) varies with the content of the searched scenes. SAIM’s reaction
time is measured by the amount of simulated time it takes until the activation
of a template unit passes a threshold of 0.8. The increase of reaction time results
from the competitive interactions within the selection network. These competi-
tive interactions are driven by the comparison between the output of the feature
extraction and the top-down activation from the contents network (see Eq. 5).
The more objects are in the scene the more activation competes in the selection
network, thus SAIM’s reaction time increases. The different slopes result from
the different degree of matching.

4 Discussion

This paper extended the model of attention and object recognition in order to
process natural images with SAIM. The extension were two fold: First SAIM
received a biologically plausible feature extraction including Gabor filtering and
encoding in HSV-colour space. Second, the templates in new SAIM were more
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Fig. 6. Simulation results of visual search. The images show the search displays and
indicate the selected image locations with crosses. The graphs illustrate how reaction
time depends on the number of items in the scenes (search function). The figures at
the right side of the graphs indicate the slope of the search function. The time scale
can be interpreted as milliseconds.

flexible than in earlier versions, allowing to represent object shapes. The sim-
ulation results demonstrated that the new version of SAIM successfully selects



and recognizes object in natural colour images. Moreover, it can mimic exper-
imental results from visual search tasks in which reaction times increase with
the number of objects in the scene. This effect results from the influence of
parallel, competitive interactions in SAIM. There are only a few models on hu-
man attention that are capable of processing natural images, the saliency-based
model by Itti and Koch being the most prominent example [18–20]. In con-
trast to SAIM, Itti and Koch’s model utilizes a serial search scan guided by a
saliency-map to model visual search data. Also note that SAIM’s selection pro-
cess is not only driven by featural information (top-down and bottom-up), but
also by proximity-based grouping implemented by the excitatory connections in
the selection network (see [3, 6] for a detailed discussion). Such a behaviorally
plausible grouping process is not integrated in Itti and Koch’s model. Moreover,
there is an interesting difference in the way object recognition is treated by the
two models. The saliency-based model is often used as a front-end for an object
recognition system (see [26] for an recent example). Thus there is little integra-
tion between the two processes, selection and recognition. In contrast to this,
in SAIM the recognition system is an integral part of the whole architecture
and acts to modulate selection. In further work we aim to test whether SAIM
can serve as a useful framework for object recognition applications in computer
vision.
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