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Abstract

We present a revised version of the Selective Attention for Identification model (SAIM), using

an initial feature detection process to code edge orientations. We show that the revised SAIM

can simulate both efficient and inefficient human search, that it shows search asymmetries, and

that top-down expectancies for targets play a major role in the model’s selection. Predictions

of the model for top-down effects are tested with humans participants, and important

similarities and dissimilarities are discussed.
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Top-down guidance of visual search:

A computational account

Introduction

Recently, we have presented a connectionist model of human visual attention, termed

SAIM (Selective Attention for Identification Model; Heinke & Humphreys, 2003). SAIM uses

an interactive approach to object recognition and visual selection in which units within and

between processing modules compete to gain control of behaviour. SAIM produced a

qualitative fit to a broad range of phenomena concerned with human visual selection. This

included results on: two-object costs (e.g. (Duncan, 1980)), object familiarity (Kumada &

Humphreys, 2001), global precedence (Navon, 1977), spatial cueing both within and between

objects (Egly, Driver, & Rafal, 1994; Posner, Snyder, & Davidson, 1980), and inhibition of

return. When simulated lesions were conducted, SAIM also demonstrated both unilateral

neglect and spatial extinction, depending on the type and extent of the lesion. Different lesions

also produced view-centred and object-centred neglect, and both forms of neglect could even

be simulated within a single patient (see Humphreys & Riddoch, 1994, 1995 for evidence). In

essence, SAIM suggested that attentional effects in human behaviour could result from

competitive interactions in visual selection for object recognition, whilst neurological disorders

of selection can be due to imbalanced spatial competition following damage to areas of the

brain modulating access to stored knowledge.

In this paper we present an extended version of SAIM in which a feature extraction

process was added, whilst maintaining the basic principles of SAIM (e.g., competitive

interactions leading to selection). Our aim here is two fold. First, to demonstrate that this

new version still successfully performs translation-invariant object identification – a basic tenet

of the original SAIM. Second, to assess the viability of ’extended SAIM’ as a psychological

model, particularly when applied to data from visual search tasks and to data on the influence

of the top-down guidance of human visual search.
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Over the past 20 years the visual search paradigm has generated a vast amount of

experimental evidence on visual selection (see Wolfe, 1998 for a recent review). Here we will

focus on the most important outcomes. One common result is that, when a target shares

features with the distractors, the search function shows a linear increase of reaction time with

the number of items in the display. The slope and the intercept of the search function can

variy with the properties of the target and distractor, though a search slope of less than

10ms/item is typically considered to indicate efficient search, whereas search slopes of

20ms/items and above are considered as examples of inefficient search (Wolfe, 1998). For

target-absent trials the overall reaction time is typically longer than for present trials and

slopes are usually higher. In some cases the efficiency of the search can change dramatically

when targets and distractors are interchanged. So the search for target ”X” amongst distractor

”Y” can be very efficient, whereas the search for ”Y” with ”X” as distractor can be very

inefficient. This phenomenon was termed a ”search asymmetries” by Treisman (1988) and has

been demonstrated with a variety of search displays (see Wolfe, 2001 for a recent review). Here

we will demonstrate that SAIM is capable of generating both efficient and inefficient

(apparently spatially serial) search from its parallel processing architecture, and that it can

capture basic search asymmetries such as the more efficient detection of oblique relative to

vertical targets (e.g. Foster & Ward, 1991).

Like old SAIM, new SAIM is responsive to top-down processing as well as bottom-up

factors in guided search. For example, pre-activating a template (to expect a particular target)

can lead to early biases on selection to favour the expected target over other (unexpected)

items in the field. Here we will report simulation results examing the role of top-down

guidance in visual search. Recently, a few experimental papers have looked at the issue of

top-down influences in visual search (e.g. Wolfe, Butcher, Lee, & Hyle, 2003; Kristjansson,

Wang, & Nakayama, 2002; Hodsoll & Humphreys, 2001; Müller, Reimann, & Krummenacher,

2003). However, as we will discuss in the section dealing with the simulations, none of these

papers can be seen as a test of SAIM’s performance. An experimental test of a novel

prediction derived from SAIM is then reported.
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SAIM

Overview

Figure 1 gives an overview of SAIM’s architecture highlighting its modular structure. In

a first stage of processing in the model, two features, horizontal and vertical lines, are

extracted from the input image. The contents network then maps a subset of the features into

a smaller Focus of Attention (FOA), a process modulated by spatial attention. This mapping

of the contents network into the FOA is translation-invariant and is gated by activity from all

retinal positions competing through the selection network to gain control of units in the FOA.

This enables SAIM to perform translation-invariant object recognition. The selection

network controls the contents network by competitive interactions between its processing

units, so that input from only one (set of) locations is dominant and mapped into the FOA. At

the top end of the model, the knowledge network identifies the contents of the FOA using

template matching. The knowledge network also modulates the behaviour of the selection

network with top-down activation, with known objects preferred over unknown objects. In

addition to these modules, there is also a location map that enables SAIM to make multiple

selections. Essentially units in the location map store the object position each time an object

is recognized and then inhibits the selection network from reselecting these locations

(inhibition of return). This biases selection to move from one object to the next.

The design of SAIM’s network follows the idea of soft constraint satisfaction in neural

networks that use ”energy minimization” techniques (Hopfield & Tank, 1985). In SAIM the

”energy minimization” approach is applied in the following way: Each module in SAIM carries

out a pre-defined task (e.g. the knowledge network has to identify the object in the FOA). In

turn each task describes allowed states of activation in the network. These states then define

the minima in an energy function. To ensure that the model as a whole satisfies each

constraint, set by each network, the energy functions of each module are added together to

form a global energy function for the whole system. The minima in the energy function are

found via gradient descent, as proposed by Hopfield and Tank (1985). In the appendix the
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energy functions for each module in SAIM are stated.

Results and discussion

Basic behaviour

Fig. 2 demonstrates the basic behaviour of the new version of SAIM, when presented

with two objects (a two and a cross). It shows that both objects are selected in a serial

manner, here the two being followed by the cross. Similarly to SAIM version 1 (Heinke &

Humphreys, 2003) there was a bottom-up preference towards certain objects, in this case the

two. This bottom-up preference results from the fact that the two is assembled through an

inhomogeneous arrangement of vertical and horizontal lines. Such a heterogenous

representation facilitates the selection processes as independent object parts are assigned more

easily to the contents network by the selection network (see Eq. 1). We do not claim

psychological plausibility for the two being preferred in selection over the cross, but it does

illustrate asymmetries in bottom-up bias in the model. Fig. 3 shows that the bottom-up bias

can be overcome by giving the cross-template a higher initial value. This higher activation

filters through the selection network via the top-down modulation process (see Fig. 1). The

top-down bias was used in simulations of visual search tasks where SAIM was required ”to

look for a particular target”.

Simulation of visual search

Rechecking strategy and initial values. Due to noise in the system, SAIM has a certain

probability of missing a target. This probability depends on the display size. To reduce the

likelihood for missing a target, SAIM can be ”re-run”, to effect a rechecking process. A similar

re-checking operation was used in simulations of search by the SEarch by Recursive Rejection

(SERR) model (Humphreys & Müller, 1993). To equate the likelihood of detecting a target

across the display sizes, the probability of rechecking was proportional to the display size. For

the model, the display size is derived from overall activity in the selection network, which rises

to different levels dependent on the display size (see Figure 4). In the present simulations in
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SAIM, rechecking stops entirely when either the target is found or a predefined percentage of

items have been selected. This percentage is determined by process within the location

network. The total number of locations inhibited by IOR is divided by the total number of

locations occupied by the initial stimulus.

As explained earlier, the setting of a higher initial value for the template unit of the

target can be seen as related to the instruction ”Search for item X”. The exact choice of initial

values has to balance several factors. If the initial value is too high, SAIM is more likely to

produce a false positive response, because the knowledge network would converge into a target

response irrespective of the bottom-up information from the selection and contents networks.

Also an absent decision could take longer, since the more the knowledge network is biased

towards the target, the greater the time taken for the knowledge network to switch from

”present” to ”absent” . However, there is also a lower bound for the initial activation. If the

top-down bias is not high enough to override a bottom-up bias towards the distractor,

rechecking would occur frequently and search would be very slow. In each of simulations here

the initial values were set to balance the two constraints so that targets were found with a

psychologically plausible error rate.

Linear search function and search asymmetries. Fig. 5 illustrates that the new version of

SAIM is capable of simulating a result frequently interpreted as indicating a spatially serial

search process – where there is a linear increase in search and absent responses are slower and

show a greater slope than present responses. This arose when the target was a vertical line and

the distractors oblique lines, and in this case the absent : present slope ration was 2.1:1,

consistent with a serial, self-terminating search (cf. Treisman & Gelade, 1980). In contrast to

this, a ”flat” search function arose when the target was the oblique line and the distractors

were vertical. This search asymmetry matches the pattern found in human subjects (Foster &

Ward, 1991). In SAIM, the asymmetry arises because of a bottom-up bias in the model,

favouring the oblique target. This bias occurs because the oblique is coded as a mixture of

horizontal and vertical edges, so that it has a heterogeneous representation at the feature level.

This heterogenous representation in turn allows the selection network to assign parts to
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locations in the contents network more easily than when the lines are coded in a homogeneous

feature space. In humans, this bias in coding could come about because horizontal and vertical

feature detectors are more prevalent in early vision (see Appelle, 1972 for an interpretation of

the ”oblique effect” in human vision along these lines; cf. Wang, Ding, & Yunokuchik, 2003).

When searching for the vertical line, the linear increase of SAIM’s reaction time originates

from two factors: First the time to select an item increases with the number of items, reflecting

greater competition for selection (see Figure 4). Second, the number of rechecks increases with

the number of items, reflecting the greater probability of missing a target at larger display

sizes. Third, the bottom-up bias in the model favours selection of an oblique over a vertical

stimulus (see above). When the target is vertical, this bias can only be overcome by top-down

activation from the knowledge network. This top-down activation takes time to be effective,

since activation has to propagate through the contents network to the selection network.

Prediction. In a series of simulations we tested the influence of the top-down bias

introduced by varying the initial activation values of template units in the knowledge network.

Fig. 6 shows that the search slope decreased with increasing initial activation values for a

moderately difficult search (T vs Ls) and for a more difficult search for the model (vertical line

vs. oblique lines). The size of the benefit in terms of the search slope was roughly equal in the

two cases. This pattern results from the fact that larger top-down biases lead to a decrease in

selection time and an increase in the hit-rate, so that rechecking is in turn reduced.

Extrapolating from these data to human data, we can ask whether top-down knowledge

of the target can modulate competition from distractors, so that there is a reduced effect of

display size on search for an expected target. This can come about without any increase in

false positive responses, provided that template activation is not set too high. There have been

several attempts to examine what have been termed top-down influences on human visual

search search. For example, some studies have evaluated effects of foreknowledge of the target

being in a particular dimension (without knowing the target’s feature value along that

dimension) or knowing the target’s features but not which dimension the target may be defined

in (e.g., Found & Müller, 1996; Müller et al., 2003; Wolfe et al., 2003). Others have evaluated
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priming effects from one trial to another (Hillstrom, 2000; Kristjansson et al., 2002; Maljkovic

& Nakayama, 1994, 1996; Zelinsky, 2001). In a third set of studies by Hodsoll and Humphreys

(2001) and Bravo and Nakayma (1992), visual search for the odd-one out (unknown target

condition) was compared with the situation when participants knew the target. In general, the

data from these studies show that search benefits from top-down foreknowledge, with search

operating more efficiently when such knowledge can be applied. However, the type of top-down

influence these experiments explore is different from the way of top-down influence is

manipulated in SAIM’s simulations. In the simulations the target always known to SAIM, as

indicated by higher initial values for the target template relative to any other template. The

variation of initial values only indicates the degree to which SAIM looks for the target. Hence,

we assume that the initial value is proportional to the expectation of the presence of a given

target. Manipulating expectation in visual search tasks can be done by using a cue preceding

the search display and instruct the participants that the cue gives a hint of what could be the

target in the following search display. For such a priming experiment SAIM predicts that

participants are better in terms of search slope and the overall reaction time when the prime is

valid compared to when there is no prime is given. Additionally, when the prime was wrong as

in the simulated absent trials, the slope and the overall reaction time would be higher.

Experiment

Method

Participants. 24 undergraduates (2 male and 22 female) from the University of

Birmingham participated in this experiment. The average age was 21.5 years. All participants

had normal or to corrected-to-normal vision and were naive to the purpose of the experiment.

Apparatus and Stimuli. The experiment was conducted by a Gateway 2000 computer

using E-prime software package. Stimuli could appear at 8 possible locations evenly distributed

around the perimeter of an imaginary circle of diameter 2.96◦. Items were white with a visual

angle of 0.7◦ by 0.7◦ from an approximate viewing distance of 60cm. They appeared on a black
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background. The search array contained either 4 or 6 items. The target was either an upright

L or V, and the distracters were Ls rotated 90 clockwise or counterclockwise from the target

orientation (see Duncan & Humphreys, 1989 for a similar display).

Procedure and Design. All participants completed all trials in one session. The trial

sequence is illustrated in Figure 1. A fixation point appeared in the centre of the screen for 1

second. This was then replaced by a star (neutral prime), a V or an L for 1200ms (the prime).

Then, after an ISI of 100 ms, the search display appeared. Observers were asked to respond as

quickly as possible whilst maintaining a high degree of accuracy. Responses were made by

pressing z for target present (V or L) or m for both absent. The left hand was used to indicate

target presence and the right to indicate absence. The final display remained visible until a

response was made. A repeated measures design was adopted with a total of 16 conditions

These conditions involved all possible permutations of the 3 factors: validity (33% valid, 33%

neutral, 33% invalid), target (36.1% L, 36.1% V, 27.8% absent or catch trials) and number of

items (50% 4, 50% 6). 18 practice trials were followed by a total of 576 trials (4 blocks of 144).

Participants were asked to take at least a minute break after each block.

Results

Overall accuracy was 96%. One participant was removed due to an error rate of 50%.

Fig.8 plots the mean RTs vs. the set size for the quick (V) and slow (L) targets as a function

of validity. For present trials a three-way within-subjects ANOVA was conducted with the

following factors: validity (valid, neutral, invalid), target (L, V) and number of items (4, 6).

All 3 main effects were significant: validity (F (2, 44) = 20.23, p < 0.001), target

(F (1, 22) = 67.37, p < 0.001) and items (F (1, 22) = 83.14, p < 0.001). No significant interaction

was found between validity and number of items (F (2, 44) = 0.474, p = 0.626), but all other

two way interactions were significant: validity x target (F (2, 44) = 13.62, p < 0.001), and

target x items (F (1, 22) = 16.95, p < 0.001. The three way interaction between validity, target

and items was not significant (F (2, 44) = 3.01, p = 0.059).

For the slow target (L) there were significant main effects of validity
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(F (2, 44) = 7.83, p < 0.001), and number of items (F (1, 22) = 71.36, p < 0.001). The

interaction between validity and items was not significant (F (2, 44) = 0.54, p = 0.589).

For the quick target (V) there were significant main effects of validity

(F (2, 44) = 26.95, p < 0.001) and number of items (F (1, 17) = 25.84, p < 0.001). Their

interaction was also significant (F (2, 34) = 4.11, p = 0.023). The slopes were 17.7 ms/item for

the valid prime, 31.2 ms/item for the neutral prime and 40.7 ms/item for the invalid prime.

Discussion

The results showed three qualitatively different outcomes. For both types of target RTs

for the valid priming condition were overall faster than for the neutral condition, and the

neutral condition showed an overall faster reaction time compared to the invalid condition.

However, performance differed for the slow (L) and quick targets (V). For the quick target, the

slope increased in the invalid condition compared to the neural condition, whilst the slope was

reduced further when the prime was valid. That is, the effect of the prime increased with the

number of items. In contrast to this, the search slope for the slow target was unaffected by

target foreknowledge, though there was an overall RT decrease in the valid priming condition.

For the moderately difficult target these results fit with the predictions of SAIM, where

effects of top-down knowledge emerge on the slopes of the search functions. However, for the

very difficult target human performance does not show an effect of prime validity on search

efficiency, as predicted by SAIM. The prime influenced only the overall RT. In the framework

of SAIM this discrepancy can be explained by the fact that difficult targets might warrant

more rechecks than easier targets and that, in contrast to the simulations presented here, the

initial template values are lowered with each recheck, leading to smaller search benefits for

difficult targets. This decline of the benefit increases with display size, since the number of

rechecks increases with display size as well. This may counter any benefit from top-down

activation at the larger display sizes. Such a modification in SAIM would allow the model to

simulate the experimental findings. Moreover, it would predict that for fast reaction times

(with fewer rechecks) human responses to the difficult target would show a similar interaction
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between search efficiency and prime validity as for the quick target.

General Discussion

We have demonstrated that SAIM can be successfully extended to include a feature

extraction process, and to simulate search for a target amongst multiple distractors. We also

predicted a particular pattern of top-down priming from knowledge of the target’s identify.

This prediction was verified in a search task involving either an easy or difficult target.

Overall, the results suggest that this modified version has considerable promise for capturing a

wide range of data on human visual selection. The mechanism of search involved in SAIM

includes spatially parallel selection of a display, followed by further re-iterative, parallel

selections. The number of re-iterative selections required depends on an initial estimate of the

display size. This re-iterative selection is similar to the SERR model proposed by Humphreys

and Müller (1993), which also coupled a re-checking operation to a parallel selection process

and captured variations in human search performance as a function of target and distractor

grouping. However, SERR was hard-wired to detect T and T-like stimuli, which limits its

application to search involving other items. SAIM, in contrast, can be used to search an

unlimited set of stimuli, depending only on the tuning of its weights from the FOA to the

knowledge network. This generalibility will enable the model to be tested effectively in the

many search tasks that have been explored with human participants.

Another alternative approach to modelling visual search represents the

”saliency-map-based” approach, implemented in computational models such as those of Koch

and Itti (2001), and in psychological models such as Guided-Search (GS) (Wolfe, 1998). In GS,

a first processing stage extracts features from the input display which are represented in

independent, retinotopically-defined feature maps (see also Treisman & Gelade, 1980).

Activation in these maps is determined both by the strength of the input and by the contrast

between each part of the image and its neighbouring regions (in each feature space). A feature

that contrasts with its local neighbourhood gains enhanced activation through lateral

inhibition. A saliency-map (or master map) combines additively the activation from the
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feature maps, and weights each location of the input according to its saliency. Based on this

saliency-map the scene is scanned serially, starting with the most salient location, and at each

location a form of object recognition takes place, testing if the location contains the target. In

addition to this bottom-up computation of the saliency-map, top-down process can influence

search by increasing activation at locations in the features maps that contain the features of

the target. For instance, if the target is a red, left tilted line, the feature maps for red and left

orientation show an increased activation at positions where these features are present in the

scene. The increased activation leads to an enhanced saliency of the target making selection

more efficient. Hence, like SAIM, GS would predict that foreknowledge of the target should

facilitate selection, though it is unclear whether the gains should be most for a high or a low

salient target without operationalising the parameters of the model. However, top-down

modulation operates differently in SAIM and GS. For example in GS, top-down guidance

involves activating feature maps for expected target features. In SAIM, the guidance is for a

specific object. SAIM is, thus, consistent with experimental data on object-based top-down

effects (Soto, Heinke, Humphreys, & Blanco, in press). Moreover, it is interesting that, in data

on human search, there is evidence for search to be influenced by associates of expected targets

(Moores, Laiti, & Chelazzi, 2003), suggesting that templates for specific objects are set-up and

that there is even a spread of activation across templates, so that search is guided towards

associates and not just the features of the expected target. In addition, in SAIM the activation

throughout the system declines gradually when there is a blank screen. Thus, if a blank

appeared between the offset of a prime and a search display, the action of the pre-activated

template should decline, and the top-down influence should decrease. This decrease in priming

should be monotonically related to the interval between the prime and the search display. This

prediction is currently being tested in our lab. Of course, such a mechanism could be also

implemented in GS, but this is not an emergent property of the model, as it is in SAIM.

Relative to GS, SAIM may also provide a more adequate way of modelling grouping and

of linking grouping processes in search to object recognition (e.g. with grouped parts being

matched to a template). As we have noted GS uses lateral inhibition to enhance the saliency of



A computational account 14

stimuli but it does not group elements together to form structured representations. SAIM does

do this, with parts being coded in relation to the centre of gravity of the stimulus. We suggest

that this again adds to the generality of the approach, since SAIM provides both a model of

attention and object recognition. Also, unlike SAIM, GS has not been explored in relation to

neuropsychological data, so we do not know whether the model will degrade in a manner

consistent with human data. SAIM, on the other hand, can capture neuropsychological

disorders, such as visual extinction and neglect.

MORSEL (Mozer, 1991; Mozer & Sitton, 1998) is another model of selection which has

been used to simulate some aspects of visual search. MORSEL has two main components: an

object-recognition system and a spatial attention system. The object recognition system

operates in an hierarchical manner, pooling visual information across increasingly large

receptive fields. The spatial attention network gates activation entering into the object

recognition system, which is then biased in favour of attended objects. In visual search mode,

MORSEL operates very similar to GS with its serial scan controlled by top-down modulated

feature maps. MORSEL’s object recognition model can respond to perceptual groups formed

from from activation pooled together in units at the higher-end of the recognition hierarchy,

and so, like SAIM, it may be able to capture effects of perceptual grouping on search.

However, since top-down processes in the model operate in a feature-based manner, as in GS,

it seems difficult to explain human data demonstrating object-based top-down effects in search

(Moores et al., 2003; Soto et al., in press). By having item-specific feedback from templates,

SAIM can address data on early top-down guidance.

In sum, though there are other explicit models of visual search that capture aspects of

human data, we suggest that SAIM may provide the widest-ranging account, that can

generalize across stimuli, that models grouping effects, and that accounts for the interaction

between bottom-up and top-down effects in search.
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Appendix

Mathematical description of SAIM

Feature extraction

The feature extraction results in a three-dimensional feature vector: horizontal and

vertical lines and the image itself. The lines are detected by filtering the image with 3x3 filters

(

−2 +1 −2

−2 +1 −2

−2 +1 −2

for vertical lines and its transposed version for horizontal lines). The feature

vector is noted as fn
ij hereafter, with indices i and j refereing to retinal locations and n to the

feature dimension. This feature extraction process provides an approximation of simple cell

responses in V1. As becomes obvious in the following sections, the use of just this simple

feature extraction is not of theoretical value and arises only from practical consideration (e.g.,

the duration of any simulations). In principle, a more biologically realistic feature extraction

process can be substituted (e.g. Gabor filter).

Contents network

The energy function for the contents network is:

ECN (ySN,yCN) =
∑

ijlm

(yCN
lmn − fn

ij)
2 · ySN

lmij (1)

ySN
lmij is the activation of units in the selection network and yCN

lmn is the activation of units in

the contents network. Here and in all the following equations the indices i and j refer to

retinal locations and the indices l and m refer to locations in the FOA. The term (yCN
lmn − fn

ij)
2

ensures that the units in the contents network match the feature values in the input image.

The term ySN
lmij ensures that the contents of the FOA only reflect the region selected by the

selection network (ySN
lmij = 1). Additionally, since setting an arbitrary choice of ySN

lmijs to 1

allows any location to be routed from the feature level to the FOA level, the contents network

enables a translation-invariant mapping.
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Selection network

The mapping from the retina to the FOA is mediated by the selection network. In order

to achieve successful object identification, the selection network has to fulfill certain

constraints when it modulates the mapping process. These constraints are that: (i) units in

the FOA should receive the activity from only one retinal unit; (ii) activity of retinal units

should be mapped only once into the FOA; (iii) neighborhood relations in the retinal input

should be preserved in mapping through to the FOA. Now, to incorporate the first constraint,

that units in the FOA should receive the activity of only one retinal unit, the equation of the

WTA-equation suggested by (Mjolsness & Garrett, 1990) turns into:

ESN1
WTA(ySN) =

∑

ij

(
∑

lm

ySN
lmij − 1)2 (2)

The second term implements the second constraint:

ESN2
WTA(ySN) =

∑

lm

(
∑

ij

ySN
lmij − 1)2 (3)

In both terms the expression (
∑

ySN
ikjl − 1)2 ensures that the activity of one location is mapped

only once into the FOA.

The energy following energy function implements the neighbourhood constraint:

ESN
neighbor(y

SN) = −
∑

i,j,l,m

L∑
s=−L
s6=0

L∑
r=−L
r 6=0

gsr · ySN
lmij · ySN

i+r,k+s,j+r,l+s (4)

with gsr being defined by a Gaussian function:

gsr =
1
A
· e− s2+r2

σ2 (5)

where A was set, so that the sum over all gsr is 1. When units linked via gsr are activated to

ySN
lmij = 1, the energy is smaller than when these units have different values, e.g. zero and one.
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Since gsr connects units that relate to adjacent locations in both the FOA and the input

image, this implements the neighbourhood constraint.

To implement inhibition of return, the location map prevents the reselection of an

inhibited location through the following energy function:

ESN3(ySN) = −
∑

lmij

(1−
∑

lm

yLM
ij )ySN

lmij (6)

The term (1− yLM
ij ) suppresses already-selected locations and supports the selection of new

locations.

Knowledge network

The energy function of the knowledge network is defined as

EKN (yKN,yCN) = aKN (
∑

k

yKN
k − 1)2 − bKN

∑

lmn

(yCN
lmn − wk

lmn)2yKN
k (7)

The index k refers to template units whose templates are stored in their weights (wk
lmn). The

term (
∑

k yKN − 1)2 restricts the knowledge network to activate only one template unit. The

term
∑

lmn(yCN
lmn − wk

lmn)2 · yKN
k ensures that the best-matching template unit is activated.

aKN and bKN weight these constraints against each other.

Rechecking

In order to implement rechecking, a ”location map” is computed based on activity in the

selection network:

yLM
ij = yLM

ij (old) + aIR
M∑

l=1

M∑

m=1

ySN
lmij (8)

When a template unit in the knowledge network passes a threshold θ, the location map is used

to reduce the activity in the visual field. aIR controls the amount of inhibition. All units in the

selection network and the knowledge network are set to the initial state they had at the
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beginning of the simulation.

Noise

The noise in SAIM was insert in the input stimulus and was based on the following

equation:

Θ̈ + γΘ̇ + sinΘ = A · cosωt (9)

This equation was inspired by the motion equation of a periodically driven pendulum where γ

is the damping constant and the right side describes a driving torque with amplitude A and

frequency ω (e.g. Schuster, 1989). This equation was chosen on merely technical grounds. It

exhibits chaotic behaviour, hence a quasi-stochastic temporal behaviour. It does not produce

big leaps in amplitude and therefor does not distort the process of the gradient descent.

To ensure that each pixel of the input stimulus receives a different signal, each pixel has

its own pendulum equation initialized with a different value:

Θ̈ij + γΘ̇ij + sin Θij = A · cosωt (10)

For each pixel (ij) a different initial value is chosen randomly. To limit the amplitude of the

noise, Θ was fed into the following equation:

εij(t) = 0.5 · sinΘij(t) · (max−min) + (max + min) (11)

εij was added to the input stimulus Iij .
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Figure Captions

Figure 1. Architecture of SAIM

Figure 2. Basic behaviour of new SAIM. At the bottom of the figure we show the activation of

units in FOA at a series of time steps, based on network iterations (the t-values). The top of

the figure we show the variations in activation over time for the 2 and + units in the

knowledge network.

Figure 3. The simulation is set to select the + in preference to the 2, based on pre-activation

of the + unit in the knowledge network. The pre-activation is apparent in the difference in the

activation of the knowledge network at t = 0.

Figure 4. The plots show the time course of the activation of one unit in the selection network

for different display sizes (2, 4 and 6). The units represent the location of the item which was

finally selected. The time course illustrates the increased competition in SAIM as the number

of distractors increase. At the point in time marked by the vertical line SAIM makes a

probabilistic decision, as to whether to perform a ”re-rechecking” operation. The re-checking

operation is set into effect, in order to reduce misses targets to a psychologically plausible

level. This decision is modulated by the height of the activation whereby the higher the

activation, the less likely SAIM will recheck. Hence, as the plot illustrates, rechecking is less

likely the smaller the display size.

Figure 5. Simulation of a search asymmetry. Search for a oblique line amongst vertical lines is

”parallel’ (0.2ms/item), whereas search for a vertical line target amongst oblique lines

produces a ”serial” search (49.9 ms/item).

Figure 6. This figure illustrates the simulation results with different initial activations of

templates units. The initial values are noted in brackets behind the slopes. The effect of
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varying the initial values was tested for an moderately difficult search (T vs. Ls) and a difficult

search task (vertical line vs. oblique lines). In both cases the search slope decreases with

increasing template values (T vs. Ls: 23.2 to 8.9; horizonal vs. oblique: 61.2 to 46.9).

Figure 7. Schematic illustration of the experimental paradigm. Here the prime is invalid.

Figure 8. Human search times to respond to the presence or absence of targets predicted by a

prime.

Figure 9. Mean reaction times for present responses to slow and quick targets in relation to set

size and prime validity.
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