UNINFORMATIVE MEMORIES WILL PREVAIL

THE STORAGE OF CORRELATED REPRESENTATIONS AND ITS CONSEQUENCES

Emilio Kropff
SISSA, Trieste

Trieste, September 15-19, 2007
Semantic memory

• Tulving, 72: “the global network codifies for a general conceptual knowledge abstracted from a large number of individual episodes or experiences”.

• Nowadays the dichotomy between Episodic vs Semantic memory is under revision. Some people think that they might be different stages of the same process.

• Embeds different kinds of information: perceptual <has 4 legs>, functional <is used for hunting>, associative <likes to chase cats> and encyclopedic <may be one of many breeds>. (DOG)
Category specific deficits

- Patients were found with a significant impairment in their knowledge about living things (animals + foodstuffs) as opposed to manmade artifacts (Warrington & Shallice, 1984).

- Heterogeneous etiology: herpes encephalitis, brain abcess, anoxia, stroke, head injury and dementia of Alzheimer type (DAT). Lesions typically include inferior parts of the temporal lobe.

- Impairment for nonliving has also been reported -> double dissociation. Current ratio: 23% vs 77% (Capitani, 03)
Theoretical accounts

- **sensory/functional theory** (Warrington & Shallice, 84) - Representation domains depend on the type of semantic information of concepts (animals - sensory information / tools - functional properties)

- **domain-specific hypothesis** (Caramazza & Shelton, 98) - Evolution has created a semantic system that is specific for animals while tools have no evolitional weight and are processed by a generic separated system.
Theoretical accounts

Theories concerning different measures of correlation between concepts:

• feature representation (McRee et al, 97) - concepts are represented by their features in an autoassociative memory. Problems with the storage capacity.

• conceptual structure account (Tyler & Moss, 01) - the structure of categories arises from: feature correlation, distinctive features and interactions between both.

• semantic relevance (Sartori & Lombardi, 04) - features have a relevance that is additive and depends on the whole structure of concepts. If a cue has a total relevance > threshold -> retrieval.
Embodied theories & Feature representation

(A) Movements
Blue: Foot movements
Red: Finger movements
Green: Tongue movements

(B) Action Words
Blue: Leg words
Red: Arm words
Green: Face words

(Pulvermuller, 04)
Early quasi-automatic word-evoked cortical activity.

"to eat" "to kick"

Pulvermuller, 2003 - MCE on MEG recordings
The cerebral cortex

• 85% of human brain
• Processing of sensory information
• Voluntary movement
• Problem solving
• Language
Cerebral cortex – Braitenberg & Schüz, 1991

- # of neurons >> # of input fibers
- Modifiable synapses
- No preferred direction in the connections
- Mostly excitatory synapses
- Great convergence & divergence
- Connections are very weak
- Two-level associative memory with formation of cell assemblies
Cerebral cortex - Braitenberg & Schüz, 1991

Two-level associative memory with formation of cell assemblies
Donald O. Hebb
1904 - 1985

Neurons that fire together wire together

Electrodes
Auto-associative memories

- No activity
- Pattern #1 active
- Pattern #2 active
- Pattern #3 active

Learning !!
Testing the memory

- Pattern #2 active
Cerebral cortex - Braitenberg & Schüz, 1991

Two-level associative memory with formation of cell assemblies
Hopfield memories

- The network stores p patterns, each one characterized by a vector ξ in N dimensions, with components following:

$$P(\xi_i^{\mu}) = (1 - a) \delta(\xi_i^{\mu}) + a \delta(\xi_i^{\mu} - 1) \quad [i = 1 \ldots N, \mu = 1 \ldots p]$$

where a is the sparseness, the fraction of active neurons when the network is in an attractor state.

$$h_i = \sum_{j=0}^{N} J_{ij} \sigma_j - U$$

$$\sigma_i = \frac{1}{1 + e^{-\beta h_i}}$$
Hopfield memories

- U is a threshold of order 1, necessary to maintain the activity low, avoiding storage capacity collapse (Tsodyks, 89).
- β is an inverse temperature
- J_{ij} are the weights following the hebbian rule:

$$J_{ij} = \frac{C_{ij}}{C \cdot a \cdot (1 - a)} \sum_{\mu=1}^{\rho} (\xi_i^\mu - a)(\xi_j^\mu - a)$$

$$\sum_{j=1}^{N} C_{ij} = C$$

$$h_i = \sum_{j=0}^{N} J_{ij} \sigma_j - U$$

$$\sigma_i = \frac{1}{1 + e^{-\beta h_i}}$$
Hopfield memories

• If patterns are randomly correlated (Tsodyks, 89),

\[\rho_{\text{max}} \sim \frac{C}{a \ln \left(\frac{1}{a} \right)} \]

• However, if patterns have a non-trivial structure of correlations, the storage capacity collapses.

• Solution #1: Orthogonalize the patterns before feeding the network (i.e. Dentate Gyrus in Hippocampus)

• In semantic memory correlation between stored patterns seems to play a major role.

\[J_{ij} = \frac{1}{C_a} \sum_{j=1}^{N} C_{ij} (\xi_i^{\mu} - A_i) (\xi_j^{\mu} - B_j) \]

\[h_i = \sum_{j=0}^{N} J_{ij} \sigma_j \]

\[m_{i^{\mu}} = \frac{1}{C_a} \sum_{j=1}^{N} C_{ij} (\xi_j^{\mu} - B_j) \sigma_j \]

\[h_i = \sum_{\mu=1}^{p} \xi_i^{\mu} m_{i^{\mu}} = \xi_i^{1} m + \sum_{\mu \neq 1} \xi_i^{\mu} m_{i^{\mu}} \]

\[A_i = B_i = a_i = \frac{1}{p} \sum_{\mu=1}^{p} \xi_i^{\mu} = \text{popularity} \]
Classical result: hebbian learning supports uncorrelated memories

Classical result: catastrophe associated to correlated memories

New result: a modification that supports correlated memories

New result: the performance is the same with uncorrelated memories

\[J_{ij} = \sum_{\mu} (\xi_i^\mu - a_i)(\xi_j^\mu - a_j) \]

.popularity: \[a_k = \frac{1}{p} \sum_{\mu} \xi_k^\mu \]
Properties with $\alpha \approx 0$, $C \approx \ln(N)$

\[h_i = \sum_{\mu=1}^{p} \xi_i^\mu m_i^\mu = \xi_i^1 m + \sum_{\mu \neq 1} \xi_i^\mu m_i^\mu \]

\[\sigma_i = \frac{1}{1 + e^{-\beta h_i}} \]

\[m = \frac{1}{N a} \sum_{j=1}^{N} (\xi_j^1 - a_j) \sigma_j \]

\[m = (1 - a_1) \left\{ \frac{1}{1 + e^{\beta (U - m)}} - \frac{1}{1 + e^{\beta U}} \right\} \]

\[a_1 = \frac{1}{N \cdot a} \sum_{\mu=1}^{p} \xi_j^1 a_j = < a_{\xi^1} > = < \xi_j^1 \xi_{\mu} >_{\mu} \]
Propeties with $\alpha \approx 0$, $C \approx \ln(N)$

If $\beta \to \infty$, $a_{1c} = 1 - U$
Propeties with $\alpha \approx 0$, $C \approx \ln(N)$

~ Conclusions ~

- If you want to be an attractor, you should pick at least some unpopular units.

- Lowering U can make any pattern retrievable -> ATTENTION
Propeties with finite α, $C \approx \ln(N)$

$$h_i = \sum_{\mu=1}^{p} \xi_i^{\mu} m_i^{\mu} = \xi_i^{-1} m + \sum_{\mu \neq 1} \xi_i^{\mu} m_i^{\mu}$$

GAUSSIAN noise (If there is independence between neurons i and j).

$$h_i \sim \xi_i^{-1} m + \sqrt{\alpha \ q \ a_i \ z_i}$$

$$q = \frac{1}{N \ a^2} \sum_{j=1}^{N} a_j (1 - a_j) \sigma_j^2$$
Properties with finite α, $C \approx \ln(N)$

\[
m = \frac{1}{N.a} \sum_{j=1}^{N} (\xi_j^1 - a_j) \int_{-\infty}^{\infty} \frac{e^{-z^2/2}}{\sqrt{2\pi}} \theta \left(z + \frac{(m - U)}{\sqrt{\alpha.q.a_j}} \right) dz \]

\[
q = \frac{1}{N.a^2} \sum_{j=1}^{N} a_j (1 - a_j) \int_{-\infty}^{\infty} \frac{e^{-z^2/2}}{\sqrt{2\pi}} \theta \left(z + \frac{(m - U)}{\sqrt{\alpha.q.a_j}} \right) dz \left(\frac{1}{a_j^2} \right)^2 dz
\]
Properties with finite α, $C \approx \ln(N)$

\[m = \int_{0}^{1} f(x) \{ (1-x)\phi_1 + x\phi_0 \} \, dx - \frac{1}{a} \int_{0}^{1} F(x) \cdot \phi_0 \, dx \]

\[q = \frac{1}{a} \int_{0}^{1} f(x) \cdot (1-x) \{ \phi_1 - \phi_0 \} \, dx + \frac{1}{a^2} \int_{0}^{1} F(x) \cdot (1-x) \cdot \phi_0 \, dx \]

\[\phi_k = \frac{1}{2} \left(1 + \text{erf} \left(\frac{k \cdot m - U}{\sqrt{2} \cdot \xi} \right) \right) \]

\[a_j \text{ follow a distribution } F(x) \]

\[a_\xi \text{ follow a distribution } f(x) \]
Properties with finite α, $C \approx \ln(N)$

\[I_f = \int_0^1 f(x) \cdot x \cdot (1-x) \, dx \]

\[I_F = \int_0^1 F(x) \cdot x \cdot (1-x) \, dx \]

- At zero order, $\alpha_c = (p/C)_c \sim 1/I_f$

- At first order, the correction depends on I_F. The faster the distribution falls, the better the storage capacity.
Properties with finite $\alpha, C \approx \ln(N)$

If $F(x)$ decays fast enough

$$I_f = \int_0^1 f(x) \cdot x \cdot (1 - x) \, dx$$

$$I_F = \int_0^1 F(x) \cdot x \cdot (1 - x) \, dx$$

$$I_F \propto \frac{1}{I_f \ln\left(\frac{I_F}{a I_f}\right)}$$

$$\text{If } F(x) = \delta(x - a) \rightarrow I_f = I_F = a \rightarrow I_c \propto \frac{1}{a \ln\left(\frac{1}{a}\right)}$$
Properties with finite α, $C \approx \ln(N)$

- If $F(x)$ decays fast enough
- If $F(x)$ decays exponentially
- If $F(x)$ decays as a power law

\[
I_f = \int_0^1 f(x) \cdot x \cdot (1-x) \, dx
\]

\[
I_F = \int_0^1 F(x) \cdot x \cdot (1-x) \, dx
\]

\[
\alpha_c \propto \frac{1}{I_f \ln\left(\frac{I_f}{a I_f}\right)}
\]

\[
\alpha_c \propto \frac{1}{I_f \left[\ln\left(\frac{I_f}{a I_f}\right) \right]^2}
\]

\[
\alpha_c \propto \frac{a}{I_f \ln\left(\frac{a^{y-2}}{I_f}\right)}
\]
Propeties with finite α, $C \approx \ln(N)$

~ Conclusions ~

• α_c depends on the retrieved pattern (selective impairment).

• A pattern is more resistant to lesioning or to forgetting if it has a smaller value of:

$$I_f = \int_0^1 f(x) \cdot x \cdot (1 - x) \, dx$$
Information = \sum_i a_i (1-a_i)
summed over active neurons in the pattern
McRae's feature norms

- (McRae et al, 05) - www.psychonomic.org/archive

- 541 concepts covering a wide range of living and non-living examples used in previous studies. Participants were provided with 20 unrelated concepts and asked to list at most 10 features. Recording identifying sinonymous features, etc.

- “Feature norms are assumed to provide valid information not because they yield a literal record of semantic representations, but rather because such representations are used systematically by participants when generating features.”
Category specific effects

Information of objects (McRae norms)

Probability Distribution

living

non living
McRae’s feature norms

• In the semantic memory literature, auto-associative networks are often presented as weak models. Why?

• To convince psychologists one must show an auto-associative memory that is able to store feature norms.
McRae’s feature norms

Size of the subgroup of patterns

Performance of the network
McRae’s feature norms

\[a \propto \frac{a}{I_f \ln \left(\frac{a^{r-2}}{I_f} \right)} \]

- \(a \): average sparseness
- \(I_f \): average information
- \(a^{r-2} \): term involving parameter \(r \)
- \(p \): number of patterns in the subgroup
McRae’s feature norms

- Size of the subgroup of patterns
- Performance of the network
- Theoretical prediction
- Simulations
Why the real network performs poorly?

- Independence between features is not valid (e.g: beak and wings). Is this effect strong enough? In case it is, there would be a storage capacity collapse.

- The system works but the approximation of diluted connectivity is not good.
McRae's feature norms: the full solution

\[h_i \sim \xi_i^{-1} m + \sqrt{\alpha} q a_i z_i + \alpha \frac{c}{N} a_i (1 - a_i) \frac{\Omega}{1 - \Omega} \sigma_i \]

\[\phi + \phi^2 + \phi^3 + \ldots \]

\[\Omega = \frac{1}{N} \sum_{j=1}^{N} a_j (1 - a_j) \sigma_j \]
McRae’s feature norms: the full solution

Performance of the network

Size of the subgroup of patterns

- full solution
- highly diluted
- simulations

Graph showing the performance of the network against the size of the subgroup of patterns.
McRae’s feature norms: strategies to store more patterns

1- kill popular neurons

2- add unpopular neurons

20 most popular over 1700

800 ~ 2.7 features per pattern
McRae’s feature norms: strategies to store more patterns

3- recombination

4- popularity

dependent connectivity

neurons i and j have high popularity: their coincidence will be less popular. If applied massively, this principle could change the whole distribution.

The probability of having a connection from neuron i should decrease with its popularity.
McRae’s feature norms: plausibility of these strategies in the cortex

1 - kill popular neurons

2 - add unpopular neurons: thought to happen in DG to impoverish the correlation fed to the CA3 memory layer of Hippocampus.

3 - recombination: found in association areas or perirhinal cortex. Could have something to do with improving storage capacity?

4 - popularity dependent connectivity
General Conclusions

• An extension of the classical autoassociative memory model permits the storage of correlated patterns

• This storage has side-effects: memories are robust inversely to the information they carry

• The result supports accounts of category specific deficits based on correlation between patterns

• Uncorrelated memories are fast to learn while correlated memories need an intermediate step
The (episodic) memory pyramid

- Primary cortex: sensory motor areas
- Unimodal and polymodal association areas
- Perirhinal and parahippocampal cortex
- Entorhinal cortex
- Hippocampus

- Orthogonalization
- Coding
- Consolidation
- Popularity calculation
- Final storage