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Abstract. Classically, visual attention is assumed to be influenced by
visual properties of objects, e. g. as assessed in visual search tasks. How-
ever, recent experimental evidence suggests that visual attention is also
guided by action-related properties of objects (“affordances”, Gibson,
1966, 1979), e. g. the handle of a cup affords grasping the cup; therefore
attention is drawn towards the handle (see Pellegrino, Rafal, & Tipper,
2005, for an example). In a first step towards modelling this interaction
between attention and action, we implemented the Selective Attention
for Action model (SAAM). The design of SAAM is based on the Selective
Attention for Identification model (SAIM, Heinke & Humphreys, 2003).
For instance, we also followed a soft-constraint satisfaction approach in
a connectionist framework. However, SAAM’s selection process is guided
by locations within objects suitable for grasping them whereas SAIM
selects objects based on their visual properties. In order to implement
SAAM’s selection mechanism two sets of constraints were implemented.
The first set of constraints took into account the anatomy of the hand,
e. g. maximal possible distances between fingers. The second set of con-
straints (geometrical constraints) considered suitable contact points on
objects by using simple edge detectors. At first, we demonstrate that
SAAM can successfully mimic human behaviour by comparing simulated
contact points with experimental data. Secondly, we show that SAAM
simulates affordance-guided attentional behaviour as it successfully gen-
erates contact points for only one object in two-object images.

1 Introduction

Actions need to be tightly guided by vision in our daily interactions with our
environment. To maintain such a direct guidance, Gibson (1979) postulated that
the visual system automatically extract “affordances” of objects. According to
Gibson (1979), affordance refers to parts or properties of visual objects that are
directly linked to actions or motor performances. For instance, a handle of a
cup affords directly a reaching and grasping action. Recently experimental stud-
ies have produced empirical evidence in support for this theory. Neuroimaging
studies showed that objects activate the premotor cortex even when no action
has to be performed with the object (e. g. Grafton, Fadiga, Arbib, & Rizzolatti,



1997; Grèzes & Decety, 2002). Behavioural studies indicated response interfer-
ences from affordances despite the fact that they were response-irrelevant (e. g.
Tucker & Ellis, 1998; Phillips & Ward, 2002). For instance, a recent study by
Borghi et al. (2007) demonstrated that pictures of hand postures (precision or
power grip) can influence subsequent categorisation of objects. In their study,
participants had to categorise objects into either artefact or natural object. Ad-
ditionally, and unknown to the participants, the objects could be manipulated
with either a precision or a power grasp. Borghi et al. (2007) showed that cat-
egorisation was faster when the hand postures were congruent with the grasp
compared to hand postures being incongruent with the grasp. Hence, the partici-
pants’ behaviour was influenced by action-related properties of objects irrelevant
to the experimental task. This experiment together with earlier, similar studies
can be interpreted as evidence for an automatic detection of affordance.

Interestingly, recent experimental evidence suggests that not only actions
are triggered by affordances, but also that selective attention is guided towards
action-relevant locations. Using event-related potentials (ERP) Handy, Grafton,
Shroff, Ketay, and Gazzaniga (2003) showed that spatial attention is more often
directed towards the location of tools than non-tools. Pellegrino et al. (2005)
presented similar evidence from two patients with visual extinction. In general
visual extinction is considered to be an attentional deficit in which patients,
when confronted with several objects, fail to report objects on the left side of
their body space. In contrast, when faced with only one object, patients can
respond to the object irrespective of its location. Pellegrino et al. (2005) demon-
strated that this attentional deficit can be alleviated when the handle of a cup
points to the left. Pellegrino et al. (2005) interpreted their results as evidence
for automatically encoded affordance (without the patients’ awareness) drawing
the patients’ attention into their “bad” visual field.

This paper aims to lay the foundations for a computational model of such
affordance-based guidance of attention. We designed a connectionist model which
determines contact points for a stable grasp of an object (see Fig. 1 for an illus-
tration). The model extracts these contact points directly from the input image.
Hence, such a model could be construed as an implementation of an automatic
detection of object affordances for grasping. To realise the attentional guidance
through affordances, we integrated the selection mechanisms employed in the Se-
lective Attention for Identification Model (SAIM, Heinke & Humphreys, 2003).
Since this new model performs selection for action rather than identification, we
termed the new model Selective Attention for Action Model (SAAM). Please
note that SAAM is the first model of its kind. In this paper we will present first
simulation results as well as an experimental verification of the model.

2 The Selective Attention for Action Model (SAAM)

Figure 1 gives an overview of SAAM. The input consists of black&white images.
The output of the model is generated in five ”finger maps” of a ”hand network”.
The finger maps encode the positions of fingers which are required for producing a



Fig. 1: Overall structure of the Selection Attention for Action Model.

stable grasp of the object in the input image. At the heart of SAAM’s operation is
the assumption that stable grasps are generated by taking into account two types
of constraints, the geometrical constraints imposed from the object shape and
the anatomical constraints given by the hand. In order to ensure that the hand
network satisfies these constraints we followed an approach suggested by Hopfield
and Tank (1985). In this soft-constraint satisfaction approach, constraints define
activity patterns in the finger maps that are permissible and others that are not.
Then we defined an energy function for which the minimal values are generated
by just these permissible activity values. To find these minima, a gradient descent
procedure is applied resulting in a differential equation system. The differential
equation system defines the topology of a biologically plausible network. The
mathematical details of this energy minimisation approach are given in the next
section. Here, we focus on a qualitative description of the two types of constraints
and their implementation.

The geometrical constraints are extracted from the shape of the object in the
visual feature extraction stage. To begin with, obviously, edges only constitute
suitable contact points for grasps. Moreover, only edges of a horizontal orienta-
tion make up good contact points, as we only consider only a horizontal hand
orientation in this first version of the model (see Fig. 1). Therefore, we imple-
mented only horizontal edge detectors using Sobel filters (Gonzalez & Woods,
1993). Finally, to exert a very stable grasp, thumb and fingers need to be located



at opposing sides of an object. This requirement was realized by separating the
output of the Sobel filters according to the direction of the gradient change at
the edge. In fact, the algebraic sign of the response differs at the bottom of a 2D-
shape compared to the top of a 2D-shape. Now, if one assumes the background
colour to be white and the object colour to be black, the signs of the Sobel-
filter responses indicate appropriate locations for the fingers and the thumb (see
Fig. 1 for an illustration). The results of the separation feed into the correspond-
ing finger maps providing the hand network with the geometrical constraints.
Note that, of course, the assumptions about the object- and background-colours
represent a strong simplification. On the other hand, this mechanism can be
interpreted as mimicking the result of stereo vision. In such a resulting “depth
image” real edges suitable for thumb or fingers could be easily identified.

Fig. 2: Excitatory connections between fingers.

The anatomical constraints implemented in the hand network take into ac-
count that the human hand cannot form every arbitrary finger configuration to
perform grasps. For instance, the maximum grasp width is limited by the size
of the hand and the arrangement of the fingers on the hand makes it impossible
to place the index, middle, ring, and little finger in another order than this one.
After applying the energy minimisation approach, these anatomical constraints
are implemented by excitatory connections between the finger layers in the hand
network (see Fig. 1 and 2). Figure 2 also illustrates the weight matrices of the
connections. Each weight matrix defines how every single neuron of one finger
map projects onto another finger map. The direction of the projection is given
by the arrows between the finger maps. For instance, neurons in the thumb map
feed their activation along a narrow stretch into the index finger map, in fact,
encoding possible grip sizes. Each neuron in the target map sums up all acti-
vation fed through the weight matrices. Note that all connections between the
maps are bi-directional whereby the feedback path uses the transposed weight
matrices of the feedforward path. This is a direct result of the energy minimisa-
tion approach and ensures an overall consistency of the activity pattern in the
hand network, since, for instance, the restriction in grip size between thumb and
index finger applies in both directions. Finally, since a finger can be positioned



at only one location, a winner-takes-all mechanism was implemented in all finger
maps. Later in the simulation section we will show that this selection mechanism
also implements global selection mimicking selective attention.

2.1 Mathematical Details

The following sections documents the mathematical details of the Selection At-
tention for Action Model.

Visual Feature Extraction The filter kernel in the visual feature extraction
process is a simple Sobel-filter (Gonzalez & Woods, 1993):

K =

−1 −2 −1
0 0 0
1 2 1

 (1)

In the response of the Sobel-filter the top edges of the object are marked
with positive activation while the bottom edges are marked with negative acti-
vation. This characteristic of the filter is used to feed the correct input with the
geometrical constraint applied into the finger maps and the thumb map. The
finger maps receive the filter response with all negative activation set to zero.
The thumb map, however, receives the negative filter response with all negative
activation set to zero:

I
(fingers)
ij =

{
Rij if Rij ≥ 0,
0 else.

(2)

I
(thumb)
ij =

{
−Rij if −Rij ≥ 0,
0 else.

(3)

with Rij = Iij ∗K whereby Iij is the input image.

Hand Network We used an energy function approach to satisfy the anatomical
and geometrical constraints of grasping. Hopfield and Tank (1985) suggested this
approach where minima in the energy function are introduced as a network state
in which the constraints are satisfied. In the following derivation of the energy
function, parts of the whole function are introduced, and each part relates to
a particular constraint. At the end, the sum of all parts leads to the complete
energy function, satisfying all constraints.

The units y(f)
ij of the hand network make up five fields. Each of these fields

encodes the position of a finger. y(1)
ij encodes the thumb, y(2)

ij encodes the index

finger, and so on to y
(5)
ij for the little finger. For the anatomical constraint of

possible finger positions the energy function is based on the Hopfield associative
memory approach (Hopfield, 1982):

E(yi) = −
∑
ij

i 6=j

Tij · yi · yj . (4)



The minimum of the function is determined by the matrix Tij . For Tijs
greater than zero, the corresponding yis should either stay zero or become active
in order to minimize the energy function. In the associative memory approach,
Tij is determined by a learning rule. Here, we chose the Tij so that the hand
network fulfils the anatomical constraints. These constraints are satisfied when
units in the finger maps that encode finger positions of anatomically feasible
postures are active at the same time. Hence, the Tij for these units should be
greater than zero, and for all other units, Tij should be less than or equal to
zero. This lead to the following equation:

Ehand(y(g)
ij ) = −

5∑
f=1

5∑
g=1
g 6=f

∑
ij

L∑
s=−L
s6=0

L∑
r=−L
r 6=0

T (f 7→g)
sr · y(g)

ij · y(f)
i+s,j+r. (5)

In this equation T
(f 7→g)
ij denotes the weight matrix from finger f to finger g.

A further constraint is the fact that each finger map should encode only one
position. The implementation of this constraint is based on the energy function
proposed by Mjolsness and Garrett (1990):

EWTA(yi) = a · (
∑

i

yi − 1)2 −
∑

i

yi · Ii. (6)

This energy function defines a winner-takes-all (WTA) behaviour, where Ii
is the input and yi is the output of each unit. This energy function is minimal
when all yi are zero except one, and when the corresponding input Ii has the
maximal value of all inputs. Applied to the hand network where each finger map
requires a WTA-behaviour, the first part of the equation turns into:

Ehand
WTA(y(f)

ij ) =
5∑

f=1

(
∑
ij

y
(f)
ij − 1)2. (7)

The input part of the original WTA-equation was used to take the geometrical
constraints into account:

Efinger(y
(f)
ij ) = −

5∑
f=2

∑
ij

wf · y(f)
ij · I(fingers)

ij . (8)

Ethumb(y(1)
ij ) = −

∑
ij

w1 · y(1)
ij · I(thumb)

ij . (9)

These terms drive the finger maps towards choosing positions at the input
object which are maximally convenient for a stable grasp. The wf factors were
introduced to compensate the effects of the different number of excitatory con-
nections in each layer.



The Complete Model To consider all constraints, all energy functions need to be
added, leading to the following complete energy function:

Etotal(y
(f)
ij ) = a1 · Ehand

WTA(y(f)
ij ) + a2 · Efinger(y

(f)
ij ) + a2 · Ethumb(y(1)

ij )

+ a3 · Eanatomic(y(f)
ij ). (10)

The parameters ai weight the different constraints against each other. These
parameters need to be chosen in a way that SAAM successfully selects contact
points at objects in both conditions, single-object images and multiple-object im-
ages. The second condition is particularly important to demonstrate that SAAM
can mimic affordance-based guidance of attention. Moreover, and importantly,
SAAM has to mimic human-style contact points. Hereby, not only the parame-
ters ai are relevant, but also the weight matrices of the anatomical constraints
strongly influence SAAM’s behaviour.

Gradient Descent The energy function defines minima at certain values of yi.
To find these values, a gradient descent procedure can be used:

τ ẋi = −∂E(yi)
∂yi

. (11)

The factor τ is antiproportional to the speed of descent.
In the Hopfield approach, xi and yi are linked together by the sigmoid func-

tion:

yi =
1

1 + e−m·(xi−s)
, (12)

and the energy function includes a leaky integrator, so that the descent turns
into

τ ẋi = −xi −
∂E(yi)
∂yi

. (13)

Using these two assertions, the gradient descent is performed in a dynamic,
neural-like network, where yi can be related to the output activity of neurons,
xi the internal activity, and ∂E(yi)/∂yi gives the input to the neurons.

Applied to the energy function of SAAM, it leads to a dynamic unit (neuron)
which forms the hand network:

τ ẋ
(f)
ij = −x(f)

ij −
∂Etotal(y

(f)
ij )

∂y
(f)
ij

. (14)

To execute the gradient descent on a computer, a temporarily discrete version
of the descent procedure was implemented. This was done by using the CVODE-
library (Hindmarsh et al., 2005).



3 Study 1: Single-Object Images

The first study tested whether SAAM can generate expedient grasps in general
and whether these grasps mimic human grasps. To accomplish this, simulations
with single objects in the visual field were conducted. The results of the simu-
lations were compared with experimental data on grasping the objects. In the
following two sections we will at first present the experiment and its result and
then compare its outcomes with the results from our simulations with SAAM.

3.1 Experiment

We conducted an experiment in which humans grasp objects. Interestingly, there
are only very few published studies on this question. Most notably Carey, Harvey,
and Milner (1996) examined grasps of a stroke patient. However, no studies with
healthy participants can be found in the literature.

(a) Object used in the grasping experi-
ment.

(b) Conditions of the experiment.

Fig. 3: Objects and Conditions of the grasping experiment.

Participants We tested 18 school students visiting the psychology department
on an open day. The mean age was 17.8 years. All participants but two were
right-handed. The left-handed participants were excluded from further analysis
because the objects had not always been mirrored correctly during the experi-
ment.

Material For the experiment we designed six two-dimensional object shapes.
The objects were made of 2.2 cm thick wood and were painted white. Their size
was between 11.5 × 4 and 17.5 × 10 centimetres (see Fig. 3a for an example).
By presenting the objects in different orientations we created fifteen conditions
(see Fig. 3b). Note that the shapes are highly unfamiliar, non-usable. Hence,



the influence of high-level object knowledge is limited in the experiment. We
chose this set-up in order to be compatible with the simulations in which SAAM
possesses no high-level knowledge either.

Procedure Figure 4a illustrates the experimental set-up. During the experi-
ment participants and experimenter were situated on opposite sides of a glass
table facing each other. The glass table was divided in two halves by a 15 cm
high barrier. Participants were asked to position themselves so that their right
hand was directly in front of the right half of the glass table. In each trial the
experimenter placed one of the objects with both hands in the right half of the
glass table. The participants were then asked to grasp the object, lift it and place
it into the left half without releasing the grip. The experimenter took a picture
with a camera from below the glass table (see Figure 4b for an example). After
taking the photo, the participants were asked to return the object to the ex-
perimenter. The last step was introduced to ensure that the participants would
not release their grasp before the photo was taken. As soon as the object was
handed back to the experimenter, a new trial started by placing the next object
in the right half of the glass table. Each participant took part in two blocks with
fifteen trails each. The order of the trials was randomised.

(a) Placing of experimenter and partici-
pant.

(b) Example of the pictures taken during
the experiment.

Fig. 4: Experimental set-up.

Results To analyse the pictures taken in the experiment, we developed a soft-
ware for marking the positions of the fingers in relation to the objects. In Figure 5
the resulting finger positions are shown for the first and second condition. Even
though the grasps show some variability, in general, participants grasped the
object in two ways: they either placed their thumb at the left side of the object
and the fingers on the right side or they placed the thumb at the bottom of the
object and the fingers on the top edges. These two different grasping positions



(a) Condition 1 (b) Condition 2

Fig. 5: Extracted finger positions for trials testing the first and second condition.
The fingers are colour-coded: red – thumb, green – index finger, blue – middle
finger, yellow – ring finger, pink – little finger.

are indicated with two markers in Figure 5 (circle and square). Such different
grasping positions were observed in all conditions.

To determined a ”typical” grip from the experimental data, averaging across
these very different grasping positions does not make sense. Therefore, we cal-
culated the mean finger positions for each grasping position separately. The
resulting mean positions are shown in Figure 6 for all conditions. Grasping po-
sitions containing only one or two samples were discarded as outliers. For the
comparison with the simulation results we only considered the grasping position
for each object chosen in the majority of trials.

3.2 Simulations

We conducted simulations with SAAM using the same objects as in the experi-
ment. Figure 7 shows two examples of the simulation results. These illustrations
also include the mean finger positions from the experimental results for a com-
parison with the simulation data. The ellipses around the mean finger positions
illustrate the variations in the data. The comparison shows that most finger po-
sitions lie within the ellipses. Hence the theoretical assumptions behind SAAM
that geometrical and anatomical constraints are sufficient to mimic human be-
haviour have been confirmed. Note that not all experimental conditions could be
simulated with SAAM, since the model is currently only able to create horizontal
grasps.



Fig. 6: Mean finger positions per class for each condition of the experiment.
Different colours mark the different classes. The thumb is highlighted by a square
box while the fingers are shown as circles. The individual fingers can be identified
by placing the thumb of the right hand on the square box and position the fingers
on the circles.

(a) Simulation 1: Experimental condi-
tion 9.

(b) Simulation 2: Experimental condi-
tion 10.

Fig. 7: Comparison of experimental results and simulated grasps. The ellipses
indicate the variation in the experimental data. The black dots mark the finger
positions as generated by the simulations.



4 Study 2: Two-object Images

SAAM produced good results for single-object displays in Study 1. This set of
simulations investigated SAAM’s ability to simulate attentional processes by us-
ing input images with two objects. Figure 8 shows the simulation results. The
simulations are successful in the sense that contact points for only one object
were selected and the second object was ignored (see Conclusion for further dis-
cussions). Note that this is an emergent property of the interplay between all
constraints. The geometrical and anatomical constraints ensure that only con-
tact points around the object were selected and the WTA-constraint restricts the
contact points to one object. In addition, the weight matrices (anatomical con-
straints) determine the selection priorities of SAAM. At present we do not have
reference data from humans. It would be especially interesting to see whether
SAAM and humans have the same select preference.

(a) Attention simulation 1. (b) Attention simulation 2.

Fig. 8: Results for the simulation of two-object images. The black dots mark the
resulting finger positions (see arrows).

5 Conclusion and Outlook

Recent experimental evidence indicates that visual attention is not only guided
by visual properties of visual stimuli but also by affordances of visual objects.
This paper set out to develop a model of such affordance-based guidance of
selective attention. As a case in point we chose to model grasping of objects
and termed the model the Selective Attention for Action Model (SAAM). To
detect the parts of an object which afford a stable grasp, SAAM performs a



soft-constraint satisfaction by means of a Hopfield-style energy minimisation.
The constraints were derived from the geometrical properties of the input object
and the anatomical properties of the human hand. In a comparison between
simulation results and experimental data from human participants we could
show that these constraints are sufficient to simulate human grasps. Note that an
alternative approach would have been a complex moment analysis (Mason, 2001).
However, our simulations suggest that anatomical constraints render such an
analysis obsolete. In a second set of simulations we tested whether SAAM cannot
only extract object affordances but also implements the guidance of attention
through affordances by using two-object images. Indeed, SAAM was able to
select one of two objects based on their affordance. The interesting aspect here
is that SAAM’s performance is an emergent property from the interplay between
the anatomical constraints. Especially, the competitive mechanism implemented
in the finger maps is crucial for SAAM’s attentional behaviour. This mechanism
already proved important in the Selective Attention for Identification Model
(SAIM, Heinke & Humphreys, 2003) for simulating attentional effects of human
object recognition. However, it should be noted that SAAM does not select whole
objects as SAIM does. Hence, SAAM’s implementation of selective attention is
not as intuitive as SAIM’s realisation. On the other hand, since SAAM and SAIM
use similar mechanisms, it is conceivable that they can be combined to form one
model. In such a model SAIM’s selection mechanism of whole objects can be
guided by the SAAM’s selection of contact points. Hence, this new model could
integrate both mechanisms, selection by visual-properties and by action-related
properties, forming a more complete model of selective attention.

Despite the successes reported here, this work is still in its early stages.
First, we will need to verify the priorities of object selection predicted by SAAM
in the second study. We also plan to include grasps with a rotated hand to
simulate a broader range of experimental data. Finally, there is a large amount
of experimental data on the interaction between action knowledge and attention
(see Humphreys & Riddoch, 2003 for a summary). Therefore, we aim to integrate
action knowledge into SAAM, e. g. grasping a knife for cutting or stabbing.
With these extensions SAAM will sufficiently contribute to the understanding
of how humans determine object affordances and how these lead to a guidance
of attention.
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