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Abstract
We review some of the major computational models of visual selective at-
tention in terms of how they apply to psychological data and to theoretical
concepts derived from experiments concerned with stimulus filtering, visual
search and spatial cueing. We also review attempts to model neuropsycho-
logical disorders of visual object recognition and attention, including visual
agnosia and neglect. We highlight how computational models can unite sev-
eral dichotomies in psychological models: space-based versus object-based
selection; early versus late selection; representational versus attentional ac-
counts for neurological deficits. A comparison of the models exposes weak-
nesses and advantages in different accounts, but it also highlights that most
models suggest that competitive interactions in visual selection are the basis
for attentional effects in human data. There is also agreement across mod-
els on explaining neurological disorders as due to imbalances in competition
following damage to certain areas of the brain. We propose that computa-
tional models clarify theoretical accounts of visual selective attention and
integrate concepts across areas. The models provide a useful contribution to
psychological research.

Introduction

This paper reviews some of the major computational models of visual attention and high-
lights, how they help to clarify concepts in psychological theories. To do this we focus on some
of the major issues and experimental paradigms that have influenced psychologists, including:
space vs. object-based attention, stimulus filtering tasks and visual search. We also discuss how
the models can be used to simulate neuropsychological disorders of visual cognition, including
agnosia and neglect – disorders that themselves highlight particular theoretical issues such as
the role of parallel grouping processes in vision, the relations between attention and spatial
representation, and the interaction between bottom-up and top-down factors in selection. We
conclude by evaluating the contribution of the modeling process to understanding cognition.
To provide the framework for our analysis, we first consider the issues and paradigms that have
dictated much of the psychological research on visual attention.

Space vs. object-based attention
Psychological theories traditionally hold that visual selection is spatially-based, assuming that
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selection involves some form of internal spotlight that activates attended regions or leads to the
inhibition of unattended regions of visual field (Posner, Snyder, & Davidson, 1980; Treisman,
1988). Strong evidence for spatial selection comes from studies of cueing which show that
detection of a target is improved when it is preceded by a spatially valid cue (Posner et al.,
1980). On the other hand experiments have also demonstrated a more object-based style of
selection. For instance, the detrimental effects of invalid cues are reduced if cues and targets
fall within the same perceptual object (Egly, Driver, & Rafal, 1994), and the costs in detecting
two stimuli presented simultaneously relative to when they are presented successively in time
are reduced if the stimuli are attributes of single object (e.g. Duncan, 1984). To capture these
results, we need theories that specify not only how both space– and object-based selection
operates, but importantly, how these different forms of selection may interact.

Stimulus-filtering tasks
One procedure that has been used extensively to investigate attentional selection in humans
has been stimulus-filtering, where participants are given a stimulus attribute to use as a cue to
select other properties of a target in a display. For instance, subjects may be asked to name
the colour of a shape (e.g. red square). Experimenters may then be interested in the impact
on selection of stimuli carrying non-target attributes (e.g., blue circle or red circle), impact on
responses to targets, and whether any impact is related to factors such as the response associated
with the relevant and irrelevant items. Generally, the effect of the distractors is dependent on
their similarity to the relevant target attributes (e.g. Heijden, 1981). On the other hand, the
experiments showed that the interference depends on the spatial distance between relevant and
irrelevant items (e.g. Eriksen & Eriksen, 1974). Eriksen and Yeh (1985) took these experimental
findings as evidence for an imperfect spatial selection process in the shape of a ”zoom lens”
stimuli falling in the penumbra of this zoom lens may still be processed to some degree, to
generate interference even at the response level. Hence, theories need to explain these aspects
of non-spatial (attribute-based) as well as spatial selection.

Visual search
One special kind of filtering task, in which the number of non-target elements are varied sys-
tematically, is visual search. Studies of visual search have been used particularly to assess the
question of which visual processes are spatially parallel and which necessitate that selection be-
comes spatially restricted, so that a target is only detected following some form of serial search
(operating across one restricted spatial region at a time) (see Wolfe, 1998 for recent review).
Typically, search efficiency is measured using the slope of the function relating reaction time
(RT) to the number of distractors present. The slope of the search function then depends on
the exact nature of the target and the distractors in the display. For instance, if the target is
distinguished by a salient feature (feature search), such as a horizontal bar amongst vertical bars,
search slopes are shallow or even flat (a result termed ’pop-out’ in search). In contrast, if the
target is defined by a conjunction of features (e.g., a blue vertical bar amongst green vertical and
blue horizontal bars) search is slow and typically linearly related to the number of distractors
present. Usually these findings are interpreted as indicating different modes of processing during
search. Efficient (flat) search functions are said to reflect spatially parallel processes whereas
linear and steep functions are attributed to spatially serial processes (e.g. Treisman & Gelade,
1980).
There are numerous theories based on this dichotomy. Here, we focus on two theories each of
which have formed the basis for computational models which we review subsequently. Wolfe
and Cave (1990) suggested that the visual system computes for each item in the display its
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saliency relative to surrounding items. A ”saliency map” is then assembled in parallel across a
display. The saliency map is also modulated by the observer’s ”set” for the target, which acts in
a top-down manner to raise activation values for relevant attributes. Values in the saliency map
are used to direct attention to the most salient item which is then compared with a memory
representation of the target. If the item is not the target, the next most salient item is selected
and tested for being a target and so forth. This serial search process, guided by saliency, is the
hallmark of the Guided Search model.
An alternative account has been proposed by Duncan and Humphreys (1989). They suggested
that items are grouped according to their similarity in an early parallel stage of processing.
These groups compete for access to a limited capacity visual short term memory on the basis of
the similarity between the stimuli and the memory template of the target. If the group that has
won the competition contains the target, the search is terminated, if not, the selection process
starts again. In the case of search for a target defined by a salient feature (feature search) the
distractor items differ from the memory template for the target and so tend to create little
competition for selection with the target. In addition, if the distractors are homogeneous they
can be grouped and rejected together. As a consequence of both factors, search is efficient and
little affected by the number of distractors present (search is spatially parallel). For targets
defined only by a conjunction of features, however, search is disrupted by a variety of factors:
(i) there can be grouping between target and the distractors sharing a critical feature, reducing
the match between the template of the target and the representation of the display; (ii) there
is little grouping between distractors that do not share features, disrupting the efficient rejec-
tion of distractors; and (iii) distractors sharing features with targets will partially activate the
target’s template, creating competition for selection. The net result is that conjunction search
will be relatively inefficient and even spatially serial – selecting each item in the display in turn.
Computational versions of these theories will be discussed below.

Neuropsychological disorders:

Visual agnosia
In conjunction with studies of visual attention in normal observers, one other important con-
straint on understanding the mechanisms of visual selection comes from neuropsychology – the
study of disorders of cognition. One example of such a disorder is visual agnosia, a term used
to apply to patients with a selective impairment in the visual recognition of common objects
(e.g. Humphreys, 1999; Humphreys & Riddoch, 1993; Farah, 1990). Patients with visual
agnosia can have difficulties in selecting information from visual displays due to problems in
grouping together relevant visual features and in segmenting apart irrelevant features. This
becomes particularly apparent in visual search tasks in which target selection is aided by the
efficient grouping and rejection of distractors (e.g., when distractors are homogeneous). Nor-
mal subjects show relatively flat search functions under these conditions, and absent responses
can even be faster than present (due to fast rejection of distractors) (Duncan & Humphreys,
1989; Humphreys, Quinlan, & Riddoch, 1989; Quinlan & Humphreys, 1987). In contrast to this
agnosic patients can show inefficient search and they may fail to demonstrate any evidence of
fast absent responses (Humphreys, Riddoch, Quinlan, Price, & Donnelly, 1992). This is not
due to a breakdown in visual attention per se, since such patients can conduct quite efficient
serial search, when grouping processes do not act to facilitate search (Humphreys et al., 1992).
Thus the study of such patients can inform us about the contribution of grouping processes
to selection. Theories hoping to provide a full account of how visual attention relates to the
processes involving in grouping and object recognition need to be able to account for deficits of
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this sort.

Visual neglect
An example of a more particular disturbance in visual attention per se is the neuropsychological
disorder of visual neglect. This term is applied to patients who, following damage to tempero-
parietal and fronto-parietal regions of the brain, may fail to respond to stimuli presented on
the side of space opposite to their lesion (see Humphreys & Heinke, 1998; Husain & Kennard,
1996; Walker, 1995; Robertson & Marshall, 1993). Performance can be affected by the position
of an object relative to the patient’s body (e.g. Karnath, Schenkel, & Fischer, 1991; Riddoch
& Humphreys, 1983). This can be interpreted as an impairment of space-based selection, re-
flecting the coding of objects in a body-centred co-ordinate schema. In contrast, other patients
neglect parts relative to an object, consistent with a spatial deficit in object-based selection. For
instance, in neglect dyslexia the impaired identification of letters on the contralesional side of
a word can occur even when the word is presented in the ipsilesional visual field (e.g. Young,
Newcombe, & Ellis, 1991), suggesting that neglect is then determined by the positions of the
letters within the word, rather than in a coordinate system centred on the body. Studies of ne-
glect, then, enable us to explore the relations between different forms of spatial coding in visual
selection. There are also other interesting aspects of the syndrome. For example, studies of word
reading demonstrate that knowledge can modulate the severity of neglect, because neglect can
be mitigated in reading words compared to reading non-words (e.g. Sieroff, Pollastek, & Posner,
1988). Hence neglect provides a means for studying the interaction of bottom-up and top-down
processes in selection. Visual extinction is typically a milder problem in visual selection and
refers to effects where patients can detect a single stimulus presented on the contralesional side
of space, but fail to detect the same item when it is exposed simultaneously with an item on
the ipsilesional side (e.g. Karnath, 1988). Recent studies of extinction have demonstrated that
effects can vary as a function of grouping between elements in the ispi– and contralesional fields.
Extinction is reduced when elements group relative to when they fail to group and so are treated
as separate objects (e.g. Gilchrist, Humphreys, & Riddoch, 1996; Ward, Goodrich, & Driver,
1994). Here again models need to be able to account for an interaction between grouping and
selection, and how selection can be subject to a spatial bias after lesioning.

Attentional vs representational accounts of neglect
Psychological theories of neglect have typically characterized the disorder as either being due
to damaged visual attention or to an impaired internal representation of space (see Riddoch &
Humphreys, 1987 for one discussion). Arguments for an impairment in spatial representation
come from studies of so-called object-centred neglect, where patients fail to report features on
one side of an object irrespective of its lateral position in space (Caramazza & Hillis, 1990;
Young et al., 1991). In contrast, arguments for a more specific impairment in visual attention
comes from studies showing that neglect can be ameliorated by cueing attention to the affected
side (Riddoch & Humphreys, 1983). Furthermore, deficits can be exacerbated when attention
is paid to the ipsilesional side from where patients seem to have problems in disengaging atten-
tion (Posner, Walker, Friedrich, & Rafal, 1984). As we shall show, computational models can
demonstrate that the contrast between ”attentional” and ”representational” aspects of neglect
is false; both aspects of neglect can emerge from a spatially-specific lesion in models in which
attention modulates the elaboration of particular forms of spatial representation.

Organization of this chapter
The computational models we will review here have attempted to account for subsets of the
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properties and paradigms used to study attention. In this chapter we will introduce the mod-
els and elaborate on the explanations they give to the different aspects of attention. In the
discussion section we will compare the different models. It should be noted that our focus
is on the major models used to simulate behavioural data. Hence, we exclude models which
have preliminary focused on applying the idea of selective attention to computer vision prob-
lems (e.g. Tsotsos et al., 1995) or on modeling the underlying neurobiology of attention (e.g.
Braun, Koch, & Davis, 2001; Hamker, in press). We begin by considering models applied to two
main paradigms used to study attention in humans – stimulus-filtering and visual search tasks.
Typically simulations of such tasks do not contain very elaborate mechanisms for object recog-
nition. Models that incorporate procedures for object recognition as well as attention, then,
provide a better account of the way in which object-based and space-based selection interact
and of how top-down knowledge can modulate bottom-up biases in selection. Consequently,
we proceed to discuss these models before proceeding to outline how models can be applied to
neuropsychological disorders such as visual agnosia and neglect.

Computational models of visual selection

The Selective Attention Model (SLAM)

SLAM was proposed by Phaf et al. (1990) to model experimental findings from filtering
tasks. In filtering tasks participants are asked to name a specific attribute of one of two objects
in the display, with the target item being specified by another attribute (e.g. Heijden, 1981). For
instance, an experiment may contain three elementary attributes: color (red, blue), form (disk,
square) and position (left, right). A typical display may consist of a red square on the left and a
blue circle on the right, and participants are asked to name the color of the square. The general
finding in such filtering tasks is, if items in the display possess the same response attribute
(congruent condition, e.g. a red disk and a red square with task is name the colour of a square),
then participants perform better than if items have different response attributes (e.g. a blue
disk and red square – the incongruent condition). Phaf et al. (1990) examined whether these
congruence effects could emerge in their computational model, incoperating processes that select
visual information in parallel over time in a competitive fashion. SLAM’s architecture is shown
in Fig. 1. Input to the model was provided by units that stood for combinations of particular
attributes – form and colour, colour and position, and form and position and position. These
input units fed through to feature modules, in which the units responded only to colour, form,
or position. Finally, the feature modules fed activation through to motor programme modules,
used for verbal responses (e.g., red, blue, circle, square, left, and right). Units with each module
were inhibitory. Thus one colour (blue) inhibited other colours (red), one shape other shapes
(square to circle), and activation in one location inhibited that in other locations. There were
recurrent connections between the modules, forcing SLAM to converge into a consistent state,
where all active units fit with the response. For instance, if the answer to the colour of the square
is red, then units which stand for red, circle and left should be active whereas all other units
are suppressed. Excitatory connections generated mutual support between items with shared
attributes, whilst inhibitory connections generate competition between items with different at-
tributes. As a result of the mutual support between elements shared by different stimuli, there
could be facilitation when separate items processed a common response attribute (concurrent
condition). In contrast, in the incongruent condition (blue disk and red square), the time taken
for SAIM to converge was lengthened, due to competition between differing attributes in the
same domain. Hence, SLAM simulated the basic findings of filtering tasks, where concurrence
of attributes speed up reaction times and incongruent attributes delays responses.
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Figure 1. SLAM’s architecture consists of seven modules. All modules behave in a ”winner take all”
fashion. The units in the input module encode conjunctions of color-position, form-colour and form-
position, for each item. The modules at the next feature stage encode separately colour, form and
position. The output stage was used to simulate motor responses in humans. There were recurrent
connections between the modules, forcing SLAM to converge into a consistent state (adapted from Phaf
et al., 1990).

In a second set of simulations Phaf et al. (1990) attempted to model data from the Stroop task
(Stroop, 1935). In this task colour names written in different hues are presented to participants
who are asked to name either the word or the hue. If asked to name the hue, RTs are delayed if
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the word and hue are different compared when they are the same. In contrast, if asked to name
the word, participants show little effect of colour incompatibility. In order to accommodate these
findings, Phaf et al. (1990) modified SLAM in two ways. First they added an input attribute,
word, so that the input to SLAM comprised of three additional input modules: word-colour,
word-position, word-shape. Second, in order to account for the asymmetry between colour nam-
ing and word naming, direct connections between the input stage and the motor stage were
added, by-passing the feature module. For the colour naming task, however, the route via the
colour feature module still determined the response of the motor programme module. This re-
sponse is delayed by the strong influence from the direct routes, especially when the word name
is incompatible with the colour name. In constrast, for the word naming task, this direct access
process produced responses were little affected by the colour feature module. Hence, SLAM
could mimic the basic Stroop effect. In addition, Phaf et al. (1990) simulated the experimental
findings when the ink colour and the word are spatially separated (e.g. Dyer, 1973). In this
procedure the Stroop task is turned into a classical filtering task, with subjects being required
to attend to the ink colour and to filter out the word. Generally Stroop interference is reduced
in these circumstances. The same result emerged in SLAM. When the colour and the word
appeared at the same location, it was harder to suppress the irrelevant attribute than when the
stimuli fell in seperate locations, when the feedback from the position module could selectively
suppress the word response. According to Phaf et al. (1990), the position-based feedback im-
plements a type of object-based selection, because the suppression of attributes that are part
of the same object is more difficult than the suppression of attributes belonging to different
objects. Phaf et al. (1990) suggest, that SLAM illustrates how object-based (or attribute-based)
and space-based attention can co-exist in one model, as both were simulated using the same
architecture.
SLAM is a very simple model, but it nevertheless shows how cooperative and competitive inter-
actions can generate apparent ”attentional effects” in simulations. Phaf et al. (1990) argue that
the model can easily be extended to process more then two items, e.g. by allowing more then
two positions being encoded in input modules. However, it is unclear whether such an extended
version of the model could simulate experimental results on selection with multiple items, as in
visual search tasks, where intricate patterns of search functions appear. In the following section
we will first discuss a serial account of such search functions and then, at the end of this section,
show that also a parallel, competitive approach to selection can account for search functions.
In addition, objects in SLAM have no explicit spatial coding of their parts. Nevertheless, neu-
ropsychological evidence on neglect indicates that spatial coding within objects is important for
human object recognition. As we will show in the rest of the paper, different architectures have
to be used to cope with spatially extended objects.

Guided Search (GS) and other models of visual search

The Guided-Search model by Wolfe (1994) is an example of a class of computational
models used to account for search in visual scenes using the idea of a ”saliency map” which
dictates the order of a subsequent serial search process. Most models within this class focus on
physiological aspects of search and/or applications to computer vision (see Koch & Itti, 2001
for a recent review). The Guided Search model, however, focuses on simulating behavioural
data. The model assumes a two-stage model of visual selection, as has long been proposed
in psychological theories (James, 1890; Neisser, 1967; Treisman & Gelade, 1980). The first,
pre-attentive stage of processing is held to be spatially parallel and to involve the computation
of simple visual features. The second stage, in contrast, is held to be attentional in nature, to be
spatially serial and it enables more complex visual representations (involving combinations of
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Figure 2. Illustration of the Guided Search model. In the first stage the output of feature maps results
from a combination of top-down and bottom-up influences. Bottom-up activation is computed from local
feature differences (see text for details). Top-down activation is based on the features of the target in
the visual search. The figure gives four examples of possible feature maps: green, red, vertical line and
horizontal line orientations. In the activation map the output of the feature maps is additively overlaid.
Search through the display takes place in a serial fashion and follows the activation in the activation map
in descending order, either until the activation falls under a threshold or the target is found.

features) to be computed. The architecture of Guided Search is illustrated in Fig. 2. In Guided
Search, the pre-attentive stage is comprised of a series of retinotopic maps that are activated in
parallel by the presence of appropriate visual features (colours, lines at particular orientations
and so forth). Each feature map encodes the presence of a particular feature across the display.
Additionally, the activation of the maps is enhanced by the differences in features between
surrounding items. For instance, if a vertical target line is surrounded by horizontal lines, then
activation in the vertical feature map at the target location is higher than if the vertical line was
surrounded by vertical distractors. This modulation of activation decreased with the spatial
distance between any features. Apart from this bottom-up activation, knowledge of the target
in visual search tasks leads to the top-down activation of feature-maps for expected target
features (e.g. the maps for ’red’ and ’vertical’, if the target is a red vertical line). The value
that features acquire, then, is a combination of bottom-up and top-down knowledge. Activation
values for elements in each feature map are used to signal locations that are worthy of further
attention. The greater the activation at a location, the more likely it is that attention will be
directed to that location. The activation from all feature maps is topologically summed within
an ”activation map” which represents the overall saliency of locations in the display. Attention
is directed to the location in the field where saliency is highest. If this location contains the
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target of the search task, the search is terminated. If not, further deployment of attention
and subsequent tests for target follow the activation of the saliency map in descending order.
This serial search terminates if either the target is found or if the activation of the unattended
locations in the saliency map falls under a threshold (see Wolfe, 1994; Chun & Wolfe, 1996 for
details).
Guided Search can be applied to data from visual search in the following manner. Targets
that are dissimilar from distractors will produce high activation in their own feature map and
within the overall saliency map. Hence, search is then efficient. This allows Guided Search to
account for flat search functions from feature search with dissimilar target-distractor pairs (e.g.
a horizontal line target amongst vertical distractors). However, if the targets and distractors
are similar to each other as in so-called conjunction search tasks, when the critical features
that specify the target are also borne by distractors (e.g. when the target is a red and vertical
line and the distractors are green vertical and red horizontal lines), the corresponding feature
maps do not indicate the location of the target, since the features of the target are similar
to the distractor features in the same feature maps. Consequently, the summed activation
from the feature maps in the saliency map does not highlight the target in the saliency map.
Indeed, Wolfe (1994) suggested that neural noise in GS would then lead to distractors being
selected before targets, since their saliency value may be higher. As a consequence, serial search
functions result. Top-down activation, for an expected target can modify this to some degree,
since it can activate the features belonging to the target (red and vertical, in our example).
The target, having both these features, can still achieve a higher value in the saliency map than
distractors which each have only one of the critical features. This can explain why conjunction
targets that have features quite different from those of each half set of distractors can be
detected efficiently (Wolfe, Cave, & Franzel, 1989). However, of the feature values of the target
and each half set of distractors become close, then distractor feature maps may be activated
along with the target feature map, losing the target’s advantage within the saliency map. is
lost and serial searches are made.
Guided Search is able to account for the major contrast between ”single feature” and con-
junction search, and by means of its top-down activation, it is able to accommodate findings
of efficient conjunction search when stimuli have quite different values along their feature
dimensions. However there are weaknesses. One is that the mechanism for serial search is not
implemented in a a manner consistent with the connectionist architecture of the earlier stages
of the model. Another is that the model does not have procedures that enable visual features
to be grouped, to allow object representations to be constructed. Yet there is considerable
psychological evidence that grouping affects early parallel stages of vision – for instance, targets
and distractors that are distinguished only by how their features group can still yield parallel
search functions (e.g. Enns & Rensink, 1991). Some targets can only be distinguished from
distractors when the stimuli group to form discriminably different objects (Humphreys &
Donnelly, 2000; Donnelly, Humphreys, & Riddoch, 1991), and targets can be difficult to detect,
if they group with distractors (Rensink & Enns, 1995).

Two connectionist models similar in flavour to Guided Search are the Feature Gate model of
Cave (1999) and the dynamic search model of (Deco & Zihl, 2001).
As outlined by Cave (1999), the Feature Gate model model uses a pyramidal architecture of
feature processing to model visual selection. At each level of the pyramid items are selected and
via an ”attentional” gating mechanism passed on to the next level. This selection mechanism
led to a successively reduced number of items and finally to one selected item. Similar to
Guided Search the selection process at each level was guided in a bottom-up and top-down
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way. As Cave (1999) pointed out, this architecture is not only capable of simulating the
same experiments as Guided Search, but several additional experimental findings on divided
attention and Eriksen flanker interference. The effects of dived attention are reproduced by
gating items through the pyramidal structure from spatially separate locations. The Eriksen
flanker interference results from the fact that the attentional gates also pass on information
from adjacent locations. Consequently, the flankers will somewhat influence the activation on
the top level of the pyramid and delay or speed-up the response of Feature Gate, depending on
the compatibility of the flankers.
The model by Deco and Zihl (2001), like Guided Search, uses feature maps which can be
modulated in a top-down fashion and sums output from feature maps in a ”high-level” map.
In addition, each feature map implements competitive interactions. This competition leads to
a convergence of activation with one winner in the ”high-level” map, marking the location of
the target. Reaction times are expressed in terms of the number of iterations that it takes
the model to produce a winner in the high-level map. Deco and Zihl (2001) reported that the
speed of convergence matches the common finding that conjunction searches are slower than
single feature search. In a feature search task the top down influence suppresses all distractors,
making the convergence of the model independent of the number of elements in the input. In
a conjunction search the top-down influence suppresses the elements in each feature map that
do not have target features, but convergence within each feature map is still affected by the
presence of distractor elements that have the same features as targets and so are not subject to
top-down suppression. As a consequence, the convergence of the high-level map was found to
depend on the number of items, producing a linear search function. In essence, Deco and Zihl
(2001)’s model shows that competitive interactions are capable of simulating search functions
even when there is no ”spotlight” of attention, so that the serial search mechanism as assumed
in Guided Search is not essential. However, Deco and Zihl (2001)’s model remains limited to
dealing with simple visual features. In the following sections we will discuss models that can
cope with more complex objects.

Search via Recursive Rejection (SERR)

SERR (Humphreys & Müller, 1993) was set up to simulate effects of grouping on visual
search as suggested by the psychological model of Duncan and Humphreys (1989). The model
was mainly based on the architecture of a Boltzmann machine (Hinton & Sejnowski, 1988). In
models of this type, units behave in a stochastic fashion with a two-state output activation,
either active or inactive. The probability of assuming one of the two states is determined by the
size of the input a unit receives from other units. The model used an hierarchical organization
to simulate visual search for letter-like stimuli made of horizontal and vertical line elements.
Formally, search for a target defined by a particular combination of such features relative to
distractors (e.g., a

T

target vs. T distractors) can be described as a conjunction search task,
since each letter is composed of the same, more primitive line elements. However, provided the
distractors are homogeneous, search can be relatively efficient (Humphreys et al., 1989). Search
becomes inefficient primarily when the distractors are heterogeneous (e.g., a

T

target vs T and

T distractors). This suggests that search in this case is strongly influenced by grouping between
distractors. The first set of units in SERR’s hierarchy coded the presence of horizontal and
vertical edges on a retina (see Fig. 3). Activation from these units was transmitted through
to units that coded combinations of the first sets of units (L-junctions, line terminators), and
activation from these units was transmitted to further representations of T-junctions formed by
combining outputs from particular L- and line terminator units. In each case, a map of units
was constructed to represent elements across the visual field. Activation from the T-junctions
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was then fed into template units, which acted to detect the targets and distractors in the exper-
iments. The target might be a T in one orientation and the distractor Ts in other orientations.
In order to capture grouping effects, excitatory connections were established between T units
within the same map and inhibitory connections between units standing for the same location
but in different maps. Thus identical Ts supported one another in the search, and heteroge-
neous Ts competed to form separate groups. Additionally the excitatory connections within the
T maps were gated by a ”location map” allowing activation only to spread to locations were
there was something in the visual field. This was done in order to suppress possible ”hallucina-
tions” of elements produced by the grouping mechanism. Activation from the letter maps was
transmitted through to template units, set up according to the particular targets and distractors
that might be used in search. At the template level, there was rapid accumulation of evidence for
identical Ts, and slower accumulation of evidence for each type of T in a heterogeneous set. The
template units themselves were also competitive, so that only one such unit was incremented on
each iteration of the network. A particular target or distractor was said to be detected when
its template unit reached a threshold. If the first template to reach threshold was the target,
search stopped. If it was a distractor, then the template and associated T units were inhibited
and search continued over the remaining elements until either a target was found or all the items
had been rejected.
SERR was able to simulate patterns of visual search found in human data with identical (ho-
mogeneous) and heterogeneous distractors. With identical and non-identical distractors, there
was rapid grouping and rejection of the background items, enabling targets to be detected ef-
ficiently, leading to a efficient search. In contrast, with heterogeneous stimuli several groups of
distractors could be selected before the target might be found. Hence, the time to detect the
target depended on the number of groups that had to be selected serially, before the target was
detected. In addition, given the stochastic behavior of the model, there was some probability
that a target present in the field may not be found. This was particularly the case with heteroge-
neous distractors, which competed strongly for selection. With heterogeneous distractor groups
a target could be temporally inhibited (its corresponding units placed in an inactive state). If
the distractors were subsequently selected (and rejected as being nontargets), the model could
decide (incorrectly) that no target was present. To prevent errors (false rejections) of this type,
search would have to be repeated. When such repetitions (re-checks) were conducted to match
the error rates found in human data, then search with heterogeneous distractors was a linear
function of the number of distractor present.
In subsequent work Müller, Humphreys, and Donnelly (1994) showed that SERR generates a
strong reduction in search time when there is more than one target present (e.g. there is a
redundancy gain). Müller et al. (1994) found that when two targets were present, search be-
came faster than was ever the case even on the fastest search trials when a single target was
present. This ”super additive” redundancy gain is difficult to explain in models assuming strict
serial search of the items present, but it is predicted by SERR (see Miller, 1982). (However, see
Townsend and Nozawa (1997) for a different view which argues that also serial models can pro-
duce super additivity). In SERR search benefits from the presence of two targets in two ways:
(i) multiple targets form mutually-supportive groups and (ii) there is a faster accumulation of
activation within template units from each grouped target. The ”super additive” results gener-
ated by SERR ocur because the model has a strong parallel component, accumulating activation
simultaneously across the field. In addition, though, SERR incorporates a serial mechanism of
successive rejection of selected items, and it can employ recursive re-checking. Hence, SERR can
be classified as a hybrid model of visual search. On one hand, it incorporates parallel, competi-
tive selection and grouping processes and on the other it applies search serially through groups
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and it applies serial re-checking. The ability of the model to simulate linear search functions
provides an existence proof that such functions are not necessarily an indication of a strict serial
(item-by-item) search process as, for instance, in Guided Search.
One interesting aspect of the work carried out with SERR is the link between computational
modeling and experimentation. For example, SERR’s predictions concerning redundancy gains
from multiple search targets were verified in empirical studies of human search conducted by
Müller et al. (1994). Other predictions derived from the model were examined by (Humphreys
& Müller, 1993). One such prediction concerns search performance when re-checking precesses
are prevented by making people respond to a fast deadline. In SERR, this re-checking process
takes the form of repeating search until the error rate declines (see above). When such repeti-
tions are decreased (e.g. because a fast response deadline has to be met), then the error rates
rise, particularly when large numbers of distractors are present. Humphreys and Müller (1993)
found a similar pattern of errors at larger display sizes in human search under fast deadline
conditions. Thus, the model served not only to simulate data, but also as a source of novel
empirical predictions.
Despite SERR’s success both in capturing prior results and in predicting novel findings, the
model is limited in several aspects. For example, it employs a fixed processing architecture
useful only for searching through T-like targets and distractors. Also, although SERR groups
elements to form large perceptual units, these groups are influenced by the local identity of
features; they do not serve the process of putting parts together for object recognition. Only
identical features are grouping, and there is no grouping between different elements that would
together form a shape (.e.g, four corner brackets making square). This constrains the applica-
tion of the model to a broader set of data on the inter-relations between object recognition and
attention. The model also encounters problems in ”scaling up”, since each feature combination
is ”bound together” by activating a local unit that represents the presence of that combination
at a given location in the field. Clearly, this would require a large number of units to represent
all possible feature combinations at all possible locations. This issue is essentially concerned
with how feature combination can be ”bound” together. SERR accomplishes binding through
allocating units in its hardware. We consider next some models that accomplish binding in a dif-
ferent manner and that attempt to address the broader issues concerning the relations between
recognition and attention.

Multiple Object Recognition and attentional selection (MORSEL)

The MORSEL model, developed by (Mozer, 1991; Mozer & Sitton, 1998) linked visual
attention to object recognition, to provide an explicit account of the inter-relations between
these two processes. MORSEL essentially contained two modules – one for object recognition
(derived from an earlier model termed BLIRNET (Mozer, 1987)) and one for visual attention.
Object recognition was achieved using a hierarchical coding schema, progressing from position-
bound detectors for line orientation and colour, to units at the top end of the hierarchy which
respond to combinations of features in a nearly translation-invariant manner (irrespective of
the lateral position of items in the field). At each level of the recognition hierarchy, features
and locations were pooled so that higher-order units respond to increasing complex features
and feature-combinations in a manner that gradually becomes less location-dependent. Many of
the simulations performed with the model have been concerned with word recognition. For such
simulations, units at the top-end of the hierarchy respond to clusters of letters and letter features.
These features are ”glued” together using an independent ”pull out” network, trained to classify
the distributed representation formed in the recognition system. This ”pull out” network can
be thought of as using stored (in this case lexical) knowledge to ”clean up” the distributed code
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that is formed in a bottom-up manner (though note that this remains a feed-forward system;
activation from the pull-out network is not used in a top-down manner, to influence feature
coding in the model). As Mozer (1991) pointed out, this process of using distributed features
to activate stored knowledge, can introduce some computational problems in its own right.
Consider the problem of word recognition, when there are several words in the field. Each word
may be recognized on its own based on a unique combination of distributed features components.
When there is activation from multiple words, though, components in each word may activate
some new lexical representation, so that the letters could be miscombined in perception to
form a word not actually present. In perceptual report, letters could ”migrate” from one letter
string to another. There is some evidence from psychological studies that indicated that these
migration errors can occur when words are briefly presented (see Mozer, 1991). To overcome
this problem, a separate ”attentional” mechanism (AM) was added. The goal of the attentional
mechanism was to modulate activation in the recognition system by raising activation levels
for stimuli in attended parts of the visual field over activation levels for stimuli in unattended
parts of the field. The main effect of this space-based, attentional modulation was to reduce
the likelihood of distributed features from multiple stimuli being combined incorrectly to form
migration errors, since only features of the attended object would be active. This architecture
is similar to the structure of the Feature Gate model, earlier introduced in this chapter, but in
Feature Gate an attentional modulation operate at every level of the recognition network (Cave,
1999). Within the AM network, units had local, excitatory connections, whilst more distant units
had inhibitory connections. This connectivity with the network led to activation converging into
an ”elastic” (as opposed to fixed size) spotlight, whose size and position depended on external
inputs. Input into the AM took the form of summed outputs from the detectors at the first
stage of recognition process, for each location in the field. Thus the AM network was insensitive
to feature properties, responding only to the presence of some ”thing” at a given region of field.
In addition, Mozer and Sitton (1998) assumed that the input of the feature maps into the AM
network could be modulated in a top-down manner from higher cognitive levels (e.g., when a
target could be in a particular colour).
Mozer and Sitton (1998) showed that MORSEL could mimic the dichotomy between feature
search and conjunction search for oriented colour elements. For the feature search task, the
top-down influence suppressed the features of the distractors, so that only the target provided
an active input to the AM. This caused the AM to select the target within the same time period
independent of the number of items present in the display. Hence, MORSEL could produce
the flat search function typical for feature search. For conjunction search, the top-down signals
biased the AM to the target location by (i) activating feature maps containing target features
and (ii) suppressing feature maps containing distractor features. However, provided the top-
down bias was not overwhelming, distractors still influenced the selection process and the search
function showed the usual dependency on the number of items due to competition in the AM.
The top-down processing in MORSEL is comparable to the top-down modulation in the Guided
Search model.
One interesting aspect of the simulations of conjunction search in MORSEL is that contrasting
effects of the distractors were found as a function of whether many or few distractors were
present. With few distractors, search was efficient and little affected by the number of targets.
With many distractors, search times increased as a function of each extra distractor. Mozer
and Sitton (1998) attributed this rise in search times to increased competition between items in
the field, and to increased crosstalk within the recognition network (since when there are more
items in the field, inter-item distances will be reduced, so higher-level units are more likely to be
activated by neighbouring features). Mozer and Sitton (1998) related these results to data on
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human visual search by Pashler (1987) who reported a ”dog leg” function for conjunction search
– reaction times were initially little effected by distractors but then increased steeply when more
distractors were presented. The same result has been interpreted by at least some investigators
as indicating effects of crowding on search for conjunction targets, due to the increase likelihood
of features being mis-combinated when stimuli are in close spatial proximity (see Cohen &
Ivry, 1991). MORSEL provides an explicit account of such feature miscombinations, and of
how attention is required to reduce such miscombinations, especially with displays with closely
proximal items.

In addition to simulating visual search data, Mozer and Sitton (1998) demonstrated the
generality of their approach by showing, how MORSEL could be used to simulate other standard
paradigms used in attention research, including: studies of spatial attention using visual cueing
and distractor-interference in stimulus-filtering tasks. Visual cueing was simulated by presenting
a brief peripheral pre-cue prior to the presentation of a target at either the cued or an uncued
location (on valid and invalid trials). Pre-activation of the target’s location in the AM facilitated
target selection, since less activation was then required when the target appeared. In contrast,
invalid cues created some competition for selection of the target’s location. The difference
between RTs on valid and invalid cue trials mimics human data (Posner et al., 1980). As we
have noted earlier, in stimulus filtering tasks distractors can interfere with responses to targets,
demonstrated by slowed RTs when targets and distractors require opposite responses (Eriksen
& Eriksen, 1974). Mozer and Sitton (1998) showed that such competition effects could emerge
in MORSEL provided that attention did not have a sharp spatial impact on processing in the
recognition module, otherwise no interference would occur. As Mozer and Sitton (1998) pointed
out, this delivers computational support for the zoom lens model of Eriksen and Yeh (1985),
where it was assumed that attention does not focus exclusively on the target and, therefore,
allow interference from distractors to occur.
MORSEL is an attempt to link attention to wider aspects of object recognition. However, it
conceptualizes attention as a separate mechanism modulating object recognition. The following
section will introduce a computational model which combines attention with object recognition
in a more interactive way.

Selective Attention for Identification Model (SAIM)

One other model that has attempted to marry object recognition to visual attention is
SAIM (Heinke & Humphreys, 2003, 1999; Humphreys & Heinke, 1998; Heinke & Humphreys,
1997). The architecture of SAIM followed an idea of ”dynamic routing circuits” put forward
by Olshausen, Anderson, and Van Essen (1993, 1995). They proposed that attention can help
to generate translation-invariant pattern recognition by serving as a ”window” through which
activation from a retinal field must pass before being transmitted through to recognition sys-
tems. Provided the window can be shifted around to different spatial positions, the same units
will modulate recognition, irrespective of the lateral positions of objects in the retinal field.
Consequently, recognition units do not need to be coded for every location in the field, since the
same input will occur across different retinal positions, normalized by the shifting attentional
window. To achieve this shifting of an attentional window across space, Olshausen et al. (1993)
proposed the existence of two sets of units: one set of units maps the contents in the visual
field into a attentional window or ”focus of attention” (FOA). The second set of units controls
the shifting of the FOA. In SAIM these two sets of units were termed the ”contents network”,
representing a partial contents of the visual field, and the ”selection network”, modulating the
units in the contents network (see Fig. 5). In SAIM a third network, the ”knowledge network”,
comprised of a set of template units corresponding to stored memories for objects. This was
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added to Olshausen’s architecture to integrate a object recognition system into SAIM, and it
enabled SAIM to simulate effects of stored knowledge on selection.
To achieve translation-invariant object recognition, the activation in the selection network had
to fulfill several constraints: (i) The contents in the visual field should be mapped only once
into the FOA. (ii) The contents of the FOA should cover only neighbouring areas in the visual
field. These constraints led to a network of competitive and cooperative interactions, as de-
picted in Fig. 6. This step followed an idea of using connectionist approaches for soft constraint
satisfaction first suggested by (Hopfield & Tank, 1985). The excitatory interactions ensure the
activation of neighbouring units in the selection network, implementing the second constraint. In
addition, the first constraint was wired into the selection network through inhibitory interactions
limiting the number of units in the selection network allowed to be activated and consequently
restricting the area SAIM can select. This network of inhibitory connections is illustrated in
Figure 6. Each row in the network contains units that are responsible for the contents of one
location in the FOA. Inhibitory connections between these units ensure that only one location
in the visual field is mapped into a given location in the FOA. Similarly, competition between
units in the columns of the network ensures that a given position in the visual field is only
mapped into one location in the FOA. The remaining winning units determine the activation
transmitted into the FOA through the contents network. Activation in the contents network is
multiplied with the activation from the selection network, so that activation from the visual field
is only transmitted to the FOA if it is supported by active units in the selection network. When
two or more objects are presented, there is competition between the activation they create in
the selection network. When top-down support is not taken into consideration (see below), the
object that tends to be selected first is the one whose local parts generate most mutual support
– either because the object is large or because the parts are arranged quite close to one other.
Interactions in the selection network also typically lead to the FOA being aligned with the centre
of mass of the selected object.
In addition to operating in a bottom-up manner, SAIM differs from the other models considered
here in that it used top-down object knowledge to influence selection directly, by modulating
activation within the selection network. This top-down influence originated from the knowledge
network, where stored-knowledge was represented by means of a set of template units, connected
to units in the FOA. The introduction of the knowledge network adds further constraints to the
behaviour of SAIM. Here, the main constraint is that the template unit that best matches the
contents of the FOA should be a maximally activated and all other units of the knowledge net-
work should be inhibited. This constraint results in two types of connectivity: First a simple
competitive interaction within the knowledge network and second a top-down modulation of the
selection network from the knowledge network. This top-down modulation biased the selection
network to favor familiar over non-familiar objects.
Having selected one of several objects present, SAIM also incorporated a mechanism for switch-
ing attention from a selected object to others in the visual field. This was accomplished by
activating units in a ”location map” corresponding to the position occupied by the object that
was selected. Once a location unit was activated, it acted to inhibit corresponding positions in
the selection network, so that these positions could no longer win the competition to control the
mapping of stimuli through to the FOA. At the same time, the template for the selected object
was also inhibited. Consequently, another, previously unattended, object then won the com-
petition for selection, so that attention switched between objects. This process mimics a form
of ”inhibition of return”, in which attention is biased against returning to locations containing
objects that have already been selected (e.g. Klein, 1988; Posner & Cohen, 1984).
The performance of SAIM was evaluated by measuring the number of iterations that it took a
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template unit to reach threshold (the reaction time (RT); Heinke & Humphreys, 2003). SAIM
showed a bottom-up bias towards large relative to small objects and to objects in which the
pixels were densely placed around their centre of mass. These effects are emergent properties
of the proximity-constraints built into the selection network. Such bottom-up biases generate
efficient selection of large, densely-packed stimuli, similar to the evidence of ”pop out” for salient
targets in human visual search (Treisman & Gelade, 1980). In addition a variety of other char-
acteristics of human selection were simulated. For example, Duncan (1980) reported a ”multiple
object cost”, where selection was shown to suffer when multiple relative to single stimuli had to
be reported. This cost was most pronounced when the reported elements come from separate
objects, and it was not evident when the elements belonged to a single object. SAIM manifests
similar effects. There is a cost for the second of two selected objects, when compared with when
only that object is presented in the field. However, all the parts of a selected object tended to
become available together in the FOA, so there were few costs for reporting multiple attributes
of attended objects. In this sense, SAIM manifested a form of object-based selection, even
though this was modulated though spatial attentional window. This was also demonstrated
in simulations of the effects of spatial cueing. Basic cueing effects were modeled by a briefly
presented a cue at a location field followed by a target at either the same or a different location.
RTs were facilitated when cues and targets fell at the same location, compared with when they
appeared at different locations, capturing data such as those reported by Posner et al. (1980).
To examine whether object coding modulated such effects, cues were presented at locations al-
ready occupied by an object in the field. On invalid trials, the target could then appear either
in the cued object, or at the same distance away but in a previously uncued object. Heinke
and Humphreys showed that the spatial effect of the cue could combine with activation from
the cued object, to generate an advantage for targets that fell within the cued object relative to
those that fell elsewhere. This simulates the data of Egly et al. (1994), typically interpreted in
favor of an object-based selection process. Other forms of object-based bias were demonstrated
by varying where a cue fell within a subsequently presented shape. Cues were most effective, if
they fell at the centre of mass of a target, due to SAIM’s bottom-up bias to centre its FOA at
this position in a shape. Similar effects in human selection were reported by Pavlovskaya, Glass,
Blum, and Groswasser (1997).
Object-based influences were apparent not only in how attention was allocated within shapes,
but also in attentional biases following selection. As we have noted, inhibition of return was
implemented by location-based inhibition of selected positions and inhibition of the templates
for an attended object. This led not only to attention being biased against selected locations,
but also against the objects that formerly occupied those locations, even if they subsequently
moved to a new location. Evidence for object as well as space-based influences in inhibition
of return has been documented (Posner et al., 1980; Tipper, Driver, & Weaver, 1991; Tipper
& Behrmann, 1996; Tipper, Jordan, & Weaver, 1999). Like MORSEL, SAIM was also able to
model forms of filtering by stimulus properties, using space as the medium for selection. For
example, the target in an Eriksen flanker task could be selected by pre-activating a location
where it would appear, though, this activation could not be so high that activation in other
(distractors) positions was prevented from creating competition for selection. When a distractor
matching the target was presented, then this overlaid the target’s activation in the FOA, facil-
itating selection. In contrast, a mismatching distractor could create transient activation in the
FOA consistent with its features rather than those of the target. This was sufficient to create
competition too at the template level, if the the target and distractor had different identification
responses. A response competition effect was consequently apparent.
As we have noted, bottom-up biases with the model could be modulated by the top-down in-
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fluences from the knowledge network. If a target template had a high activation value from
the outset of a trial (e.g., due to priming), or if it had high weights from the FOA relative to
other templates, then selection would be biased toward this target when compared with other
stimuli. This suggests that selection should be biased towards more familiar or recently primed
objects. The flip side of this is that familiar objects may be difficult to ignore when the task
is to select the less familiar of two stimuli; also objects similar to the primed stimulus may be
misrecognized as the primed item. Again, there are psycholgocial data on (i) biases to select
stimuli made familiar by consistent mapping training as targets (Shiffrin & Schneider, 1977),
and (ii) on false positives when targets are similar to primed representations (Schvaneveldt &
McDonald, 1981).
In a model such as SAIM, there is a danger that, when there are multiple stimuli in the field,
features from different items could be bound together since they activate higher-order represen-
tations in parallel. This binding problem is solved by spatial attention, which limits activation
from unattended items. This is similar to the view incorporated into a psychological model such
as ”feature integration theory” (Treisman, 1998), in which spatial attention is used to filter out
distractors, so that only the features of attended targets are available for binding. However,
since SAIM only implements how form information may be coded in vision, it is unable to cap-
ture many of the results where feature integration theory has been applied, involving studies in
which multiple stimulus dimensions have been varied (e.g. colour as well as form).
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Figure 3. The architecture of Search via Recursive Rejection (SERR) model uses a hierarchical orga-
nization to simulate search for letter-like stimuli. The first two maps in SERR’s hierarchy coded the
presence of horizontal and vertical line elements. Activation from these units is transmitted through to
maps which encode L-junctions and line terminators, and activations from these maps are combined to
activate units corresponding to T junctions in the match maps. Activation from the T-junctions is then
fed into template units. The template units accumulate the evidence for each type of T, signaling the
presence of a particular item when the relevant template reaches threshold. In order to capture grouping
excitatory connections were established between T units within the same match map and inhibitory con-
nections between same locations across different matched maps. Additionally, the excitatory connections
within the match maps were gated by the location map allowing activation only to spread to locations
where there was a stimulus on the retina (adapted from Humphreys & Müller, 1993).
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(a)

(b)

Figure 4. (a) The object recognition module (or termed BLIRNET) in MORSEL. Object recognition was
achieved using a hierarchical coding schema, progressing from position-bound detectors for line orientation
and colour, to units at higher levels of the hierarchy which respond to combinations of features, and which
are less bound to the locations of features on the retina (adapted from Mozer, 1987) .
(b) The pull-out network (top) and the attentional mechanism (AM) (bottom) in MORSEL. This ”pull
out” network uses stored (lexical) knowledge to ”clean up” the distributed code that is formed in a
bottom-up manner. The attentional mechanism (AM) modulates activation in the recognition system by
raising activation levels for stimuli in attended parts of the visual field over activation levels for stimuli
in unattended regions. This space-based, attentional modulation reduces the likelihood of distributed
features from multiple stimuli being combined incorrectly to form migration errors. External input into
the AM was formed by summing the output from the line-orientation detectors at the first stage of
recognition process, for each location in the field. Thus the external input into the AM network was
insensitive to feature properties (adapted from Behrman et al., 1991).
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Figure 5. The Selective Attention for Identification Model (SAIM) achieves translation-invariant object
recognition with three modular networks: The contents network maps the contents of the visual field into
the focus of attention (FOA). This mapping is translation-invariant. The selection network determines the
location in the visual field where elements in content network are mapped into the FOA. The knowledge
network possesses stored-knowledge in form of template units and recognizes the contents of the FOA
via simple template matching. These three component operate in parallel. The location map stores the
locations of objects already attended to and prevents these locations from being selected again. This
determines attention switching behaviour, with old items not being attended for a second time (adapted
from Heinke & Humphreys, 2003).
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Figure 6. An illustration of the topology of the selection network, shown for a one-dimensional visual
field. The horizontal and vertical lines between units stand for inhibitory connections within the rows
and columns of the network. The arrows stand for excitatory connections between units on diagonals of
the network. Every unit receives an input from the visual field in a topological fashion. The connections
ensure that the selection network obeys a set of constraints when activating units (see text for details,
adapted from Ellis & Humphreys, 1999).
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Neuropsychological deficits

We have discussed how, in addition to the paradigms used to explore visual attention
in normal observers, important evidence on the nature of attention comes from the study of
neuropsychological deficits. In the following section we will discuss how the models presented
earlier account for neuropsychological deficits.

Visual agnosia

Damage to occipital-temporal areas of the brain is associated with visual agnosia – the
impaired recognition of visually presented objects (e.g. Humphreys, 1987; Humphreys & Rid-
doch, 1993). Humphreys et al. (1992) showed that agnosic patients had impaired visual search,
but only under conditions in which grouping normally generates efficient search. This has been
modeled by SERR (Humphreys, Freeman, & Müller, 1992) with the effects of the brain lesion
simulated by adding noise to the Boltzmann activation functions in the model. The task was to
detect a form conjunction target

T

presented amongst homogeneous distractors (T’s containing
the same features as the target). When the activation functions were noisy, units correspond-
ing to the stimuli had some probability of not being activated even when the appropriate were
present in the field. Similarly there was an increased probability that units corresponding to
other stimuli were activated. The net result was that grouping between identical distractors
was disrupted, making search inefficient. In contrast to this there was little effect of increasing
the noise in the model on search for targets amongst heterogeneous distractors (e.g.,

T

vs ,T,

T and

T

). With heterogeneous distractors, grouping effects could disrupt target detection,
especially if targets grouped with distractors. In this case, any loss of the beneficial effects of
grouping were counteracted by positive effects of breaking-up inappropriate target-distractor
groups. Consistent with these simulation results, Humphreys et al. (1992) reported that search
for form conjunction targets amongst heterogeneous distractors can be relatively little affected
in agnosia (Humphreys et al., 1989). Often one might think that the effects of neural damage are
simply to degrade processing, so that the more difficult of two tasks becomes even harder. The
selective deficit on search with homogeneous, compared with heterogeneous, distractors con-
tradicts this since the easier task is then affected. This indicates that rather than generates, a
general deterioration, the brain lesion affects a specific process: grouping based on complex form
representations. The effects of lesioning SERR likewise had a selective effect with homogeneous
rather than with heterogeneous distractors, due to the disruption of grouping processes.

Unilateral neglect and extinction

Damage to temporo-parietal and fronto-parietal regions of the human brain can be asso-
ciated with unilateral neglect (a failure to respond to stimuli contralateral to the side of lesion)
and extinction (a failure to respond to contralesional stimuli when ipsilesion stimuli are simul-
taneously present; see our earlier discussion). These disorders have been simulated in several of
the models that we have reviewed.

Extinction
Basic forms of extinction have been modeled, like neglect, by having lesions alter the spatial
competition between stimuli in the visual field. In some instances, the lesions have simply been
less severe to produce extinction, though in a model such as SAIM neglect and extinction can
come about through lesions to different components of the model. We return to discuss this
point at the close of this section. Humphreys, Olson, Romani, and Riddoch (1996) introduced
spatially-specific lesions into the map locations, or into the maps coding the form conjunctions,
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Figure 7. Illustration of the ”vertical” and ”horizontal” lesions used in SAIM. Each layer in the selection
network in this illustration is responsible for the contents of one pixel in the FOA. The dark shaded areas
illustrate the areas of lesions (reduced weights on connections to those units). The horizontal lesion affects
the part of the selection network that is related to the left part of the FOA and this lesion is invariant
with respect to the visual field. The vertical lesion affects units responding to one side of the visual field.
For a vertical lesion, the mapping into the whole of the FOA can be affected, but only for the left part
of the visual field (adapted from Heinke & Humphreys, 2003).

in SERR. In this case, the lesions reduced the probability of units going into an active state.
When a single stimulus was presented on the affected part of space, the lesion was not sufficient
to prevent recognition. However, when a different stimulus was placed in the unimpaired field, it
exerted an inhibitory influence on the contralesional item, decreasing the likelihood that it would
be detected. Extinction resulted. Humphreys et al. (1996) also noted that, when the contra-
and ipsilesional stimuli were the same, extinction could be reduced because the ipsilesional item
than supported detection of the contralesional stimulus, due to excitatory connections between
items represented in the same form map. As noted in introduction positive effects of grouping on
extinction in patients have been reported by (amongst others) Gilchrist et al. (1996), Humphreys
and Heinke (1998) and Ward et al. (1994). Such grouping effects arise as a natural consequence
of positive interactions in the model between elements that can combine to form larger objects.
MORSEL and SAIM also simulate extinction in quite similar ways. In MORSEL, extinction
can be captured by introducing a spatial lesion into the attention module, so that units on one
side of space generate less activity than those on the other side (Mozer, 1991). Provided that
the lesion is not too large, a single item may still be detected on the affected side whilst being
extinguished by competition in the attention map when another item appears on the unaffected
side. MORSEL is also able to explain why extinction effects are reduced when elements are part
of a familiar object, compared with when they do not. Parts that belong to the same object
can be recovered together by the pull-out network, even if one part is degraded (Mozer, 1991).
In SAIM, extinction can emerge when lesions affect parts the left of the selection network
correspond to input from one side the visual field. This leads to a spatial imbalance in the
competitive interactions within the network, so that items on the unaffected side tend to win
the competition for selection; these items are selected in preference to stimuli that appear on
the affected side of space (Heinke & Humphreys, 2003).
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Figure 8. Object-based neglect in SAIM. Each window depicts the resulting contents of the FOA for
a symmetric cross at different locations in the visual field (from left to right). Irrespective of the cross
location in the visual field, the left most pixel is neglected by SAIM (adapted from Heinke & Humphreys,
2003).
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Figure 9. This simulation result with SAIM illustrates, how a top-down influence in SAIM can modulate
left neglect. (a) SAIM was given templates either conforming to two separate letters (I and T); in (b)
templates for the letters were used along also with a template for the combined pair of letters (the word
IT). After lesioning of the selection network there was neglect of the letter on the affected side when
the stimuli activated separate templates but not when they activated the same template (the word IT).
Here, top-down activation from the template for the word supported units in the selection network for
the letter on the affected side, enabling activation to be detected in the FOA of the model (adapted from
Heinke & Humphreys, 2003).
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Neglect
In MORSEL, neglect arises when a more severe lesion is imposed on the attention network
(relative to the lesion that generates extinction). Mozer, Halligan, and Marshall (1997), for
example, showed that neglect in bisection tasks could be simulated in terms of where the centre
of activation in the attentional network fell with a target line. When a graded lesion was imposed
across the network, attention tended to fall on the ipsilesional side of the true centre of the line.
The degree of misplacement also increased in larger lines, matching the neuropsychological data
(Riddoch & Humphreys, 1983).
In contrast to this, neglect can be induced in SAIM in at least two different ways. One way
is to increase the the severity of a ”vertical” lesion that can produce extinction in its stronger
form. This generates a bias in which stimuli presented in one part of the visual field are favored
for selection over items that fall in the lesioned area. When the lesion is sufficiently severe,
there can also be a distortion in the spatial selection process, with a target being mapped into
one side of the FOA. This has knock-on effects on the ability to disengage attention, once an
object is identified. Normally, as we have noted, attention is disengaged from identified objects
by inhibitory feedback. When the input is shifted in the FOA, the inhibitory feedback may no
longer inhibit activation from the object first identified, attention becomes ’stuck’ on this object.
On such occasions, SAIM manifests neglect of an object presented on the contralesional side of
two or more stimuli. There is space-based neglect.
A second form of neglect can be generated in SAIM by what we termed a ”horizontal” lesion,
affecting the units in the selection network that modulate the mapping from the visual field into
one side of the FOA (Fig. 7). In this case, there can be a spatial unbalancing of mapping of
information into FOA, leading to a misplaced FOA, so that elements on the contralesional side
are not mapped into the FOA. Importantly, this occurs irrespective of the absolute positions
of stimuli in the visual field, and it can affect each object present in the field (see Fig. 8 for
an example). There is a form of ”object-based” neglect, that takes place within each selected
object.
SAIM is sensitive to grouping between stimuli, with there being facilitatory interactions between
parts of a single perceptual group. In SAIM these interactions are based not only on bottom-
up relationships (e.g., proximity) but also on top-down activity when two stimuli map onto a
common template representation. For instance, in the example shown in Figure 9, SAIM was
given templates either conforming to two separate letters (I and T) or to the combined pair
of letters (the word IT). Following a lesion there was neglect of the letter on the affected side
when the stimuli activated separate templates but not when they activated the same template
(the word IT). Here, top-down activation from the template for the word supported units in the
selection network for the letter on the affected side, enabling activation to be detected in the
FOA of the model. This top-down activation extends a model such as SERR, where grouping
is based only on bottom-up similarity effects. In SAIM grouping by activating a common
template could lead to stimuli being recovered together even when there is no stronger bottom-
up grouping than in other stimuli, that are subject to neglect. The facility for top-down grouping
is useful, since equivalent effects have been observed in parietal patients. Sieroff et al. (1988)
reported neglect between letters making up nonwords, but not when the letters combined to
form words, even though bottom-up grouping should not favor the letters in words. Like SAIM,
MORSEL is also able to explain why neglect effects are reduced when elements are part of a
familiar object, compared with when they do not (see Mozer, 1991). However, the mechanisms
mediating such effects in MORSEL differ from those in SAIM. MORSEL does not employ
top-down feedback from the object recognition system to affect selection with the attentional
module, but uses the ”pull out” network to recover degraded stimuli even when the attentional
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module is lesioned. Accordingly, MORSEL, like SAIM, can account from letter recognition
being improved in words relative to nonwords in neglect patients. Interestingly, there is now
support for SAIM’s approach of top-down influence from neurophysiological evidence. Recently
McAdams and Maunsell (2000) and Motter (1994) showed that directing attention to stimulus
features modulates the responses of neurons in V4 throughout the visual field. This is similar
to how SAIM’s top-down activation operates, where the top-down modulation influences the
behaviour of the selection network throughout the visual field.
There are now also several pieces of neuropsychological evidence indicating that different forms
of neglect exist and can be fractionated from one another. One double dissociation was reported
by (Humphreys & Heinke, 1998). In their study some patients only showed neglect of the
contralateral member of a pair objects, but had no neglect of each object. In contrast, other
patients manifested neglect of each object, but did not neglect whole objects. Patients with this
last form of ”within object neglect” might be worse at identifying the left side of an object in
their right field, even relative to their identification of the right side of an object in their left field
(see also Driver, Baylis, & Rafal, 1992). Humphreys and Riddoch (1995, 1994) even reported a
dissociation between neglect within and between separate objects in a single patient, who had
suffered bilateral brain lesions. This patient neglected the left side of selected objects, whilst also
omitting whole objects presented on his right side. These double dissociations can be simulated
in SAIM, because neglect between and with objects is caused by distinct lesions. The vertical
lesion causing neglect between objects will not necessarily cause within-object neglect; similarly
the (horizontal) lesion will generate object-based neglect without effects of visual field. Heinke
and Humphreys (2003) even simulated the dissociation with a single patient, by introducing a
”vertical” lesion affecting the right side of space and a ”horizontal” lesion affecting the left.
Object-based neglect can also be simulated in MORSEL if there is a graded lesion across its
attentional field (Mozer et al., 1997). With such a graded lesion, the right side of each object
will be relatively more activated than the left side, even when the object is shifted laterally
across the visual field. There can be neglect of left-side features even when the object falls in
the right visual field. However, it is difficult to see how MORSEL can account for the double
dissociation where a whole object on the right side and left parts of objects on the left side can
be ignored, as it has been done with SAIM. This is a limitation of using a simple attentional
mechanism confined to a two-dimensional representation of the field, where a spatial lesion can
be introduced in a single way.
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Discussion

Emergent properties and existence proofs

We have presented a number of connectionist models of visual attention, which have been
applied to different psychological paradigms with both normal observers and neuropsychological
patients. The models incorporate a number of common ideas – in particular that ”attentional”
behaviour arises out of competitive interactions between units in networks. In such networks,
there is typically no single ”attentional module” that imposes selectivity on perception and ac-
tion; rather attentional behaviour is an emergent property of competitive interaction in networks.
An exception to this approach is MORSEL which has an attentional module separate from its
identification components. Another expection is Guided Search, which does not contain a com-
petitive mechanism between stimuli. According to the ”competitive” approach to attention,
”attention” may infiltrate multiple levels of information processing, where competition takes
place. This contrasts with traditional psychological models, which have tended to posit a single
locus of attention acting either ”early” or ”late” in processing (see Broadbent, 1958; Deutsch
& Deutsch, 1963 respectively). For example, in SAIM there is competition between multiple
stimuli to fall within a spatial window of attention. Cueing the window to an area of space biases
this competition so that unattended stimuli are filtered – a form of ”early” attention. Neverthe-
less multiple stimuli in the field can activate their stored representations in parallel, with there
being competition between templates to control the response. This implements a form of ”late”
selection, as evidenced by simulations of response competition in the Eriksen flanker task. The
model, thus shows how traditional psychological theories are not necessarily mutually contradic-
tory, selection can be ”early” or ”late”, depending on a variety of conditions (e.g., the presence
of cueing, the familiarity of the objects and so forth). Similarly, models such as MORSEL and
SAIM demonstrate that effects of spatial cueing cue with networks are not necessarily a result
of a module devoted to ”engaging”, ”moving” or ”disengaging” attention (e.g. Posner et al.,
1980). In these models, the dynamics of processing can also be altered by lesioning, so that, for
example, effects of invalid spatial cueing are much larger for targets presented in the affected
rather than the unaffected field (Heinke & Humphreys, 2003, see also Cohen, Romero, Servan-
Schreiber, & Farah, 1994), for a similar example in a small-scale connectionist model devoted
purely to simulating spatial cueing effects). This interaction of invalid cueing and target field
is found in studies using patients with lesions of the parietal lobe (Posner et al., 1984), and it
has been attributed to a deficit in an ”attentional disengagement” mechanism. In MORSEL
and SAIM, however, it arises because the target on the lesioned side is slow to suppress residual
activation from the cue due to the weakened impacted of the target following the lesion. As
a consequence, the selection of the target is delayed. The simulations indicate that we should
be cautious in identifying too readily a particular experimental finding with a particular (and
devoted) processing mechanism (here: for attentional disengagement).
Another dichotomy made in psychological models, that can play little role once processing is
implemented in detailed computational terms, is that between ”attentional” and ”representa-
tional” disorders in neglect. For instance, consider both MORSEL and SAIM. In both models,
neglect is produced by a bias in spatial selection so that one part of the visual world is favored
for attention. In both cases, though, there is a spatial distortion in selection, so that only a part
of space is represented (e.g., activates stored knowledge). For such models neglect is a disorder
of both attention and spatial representation. Similarly, models such as MORSEL and SAIM
incorporate mechanisms for both space- and object–based selection. In SAIM these processes
interact directly, so that object-knowledge is used to guide spatial attention by top-down acti-
vation of the selection network. In MORSEL space-based attention (in the attention module)
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and object-based selection (e.g., via the pull-out network) are functionally more independent,
although the information that is finally selected is influenced by both factors. For these models,
visual selection is not either space-based or object-based, it is both.
In these respects the models, once implemented, can act as ”existence proofs” for psychological
theory (in the above examples, the proofs demonstrate that object- and space-based theories
are not incompatible). Another example of this concerns the implementation of visual search
in models such as SERR. In SERR there is parallel processing of visual stimuli, with selection
dictated by which elements form the strongest perceptual group. There is then serial selection of
each perceptual group. For such a model, linear search functions do not reflect an item-by-item
search process; rather they reflect serial rejection of groups plus some degree of re-checking to
maintain error rates at larger display sizes. The simulations here provide an existence proof
that linear search functions are not necessarily caused by spatially serial (item-by-item) search,
as suggested in the Guided Search model. This point is made even more strongly in simulations
of search that we have carried out with SAIM. We measured the time for a target of distractor
template to reach threshold as a function of a number of distractors in the field. The time for
both the target and distractor templates to reach threshold varied linearly with the size of the
distractor set, even though there was not even serial selection of grouped items – the target
template reached threshold first when it was present and the distractor threshold was attained
first when no target was present. The effect of the distractor set size in target and distractor
selection in SAIM arises because when multiple items are present, there are systematic increases
in the competition for attention within the selection network and between the templates for the
stimuli. Again the simulations demonstrate that linear search functions can be generated by
spatially parallel search mechanisms.

Comparisons between models

The models we have discussed have, in some cases, been applied to rather different tasks
(filtering by stimulus properties, visual search, multiple word identification, etc.). This makes
it difficult to compare them directly. In particular, it is problematic to argue that one model is
superior to another given the multiple differences that exist. For example, consider SAIM and
SERR. One criterion on which models may be judged is the rule of Ockham’s razor (William of
Ockham, 1285-1347/49), that ”entities should not be multiplied beyond necessity”. The model
that employs the fewest, simplest mechanisms should be the best. A somewhat different cri-
terion is that the model should take into account as much psychological evidence as possible.
SAIM and SERR differ in terms of these criteria. SERR is simpler in terms of its processing
architecture and its processing dynamics. On the other hand, SAIM covers a broader number of
tasks (object recognition, word recognition, visual search) and it is not configured to process just
one particular type of stimulus (L and T-like items). Judgment about which model is better is
determined by the question being asked – as a model of a particular search task, then probably
SERR, since SERR unlike SAIM, incorporates form-based grouping; as a more general model
applicable to many objects, and as a solution to the binding problem, then probably SAIM.
Another approach to comparing between models is to ask whether one model is able to provide
a better account of a particular experimental result that they both attempt to address. One
example here concerns the simulations of neglect within and between perceptual objects. As
we have noted these contrasting forms of neglect can be found not only in different patients,
but even in the same patient. The observed double dissociation can be simulated relatively
easily in SAIM, since its architecture lends itself to lesioning in different ways (the vertical vs.
horizontal lesions, Fig. 7). These contrasting forms of lesioning essentially affect the selection of
stimuli in different reference frames: a retinal frame (vertical lesion) and an object-based frame
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(horizontal lesion). Lesioning in these different ways generates spatial deficits in the different
reference frames, leading to neglect either within a single object or between separate objects.
In contrast to this, MORSEL employs only a single (retinal) frame of reference for both object
recognition and attention. Object-based deficits in neglect are then brought about by graded
lesioning, so that there are relative biases in selection between the different parts of objects. We
have argued that, in this framework, it is not clear how patterns of double dissociation could
emerge especially within a single patient. We suggest that, at least as far as modeling these
different forms of neglect is concerned, SAIM provides a more natural account.
Another issue relevant to the modeling enterprise concerns how parameters are used in order to
capture particular sets of results. Ideally these parameters should be kept constant throughout
all simulations to prove the generality of the model. However, alteration of parameters can
be allowed for accounting of altered experimental set-ups. For instance, in order to account
for knowledge-based biases on selection, the initial setting for SAIM’s knowledge network was
modified so that one template unit was favoured over others, making the selection network more
likely to select the corresponding item. On the other hand, in these simulations the increased
influence of the template unit had to be restricted to limit the likelihood of false alarms, espe-
cially, if stimuli had features similar to the ”primed” target. In a sense this restriction represents
a case of fitting parameters to the data – an example of modifying parameters in a less favorable
way. However, since it seems plausible to argue that any inelligent system would have to strike
a balance between useful top-down influences and a top-down influence that becomes ineffective
because it overwrites bottom-up input. Hence, here the process of fitting the parameters to the
data is a necessary way of constraining the model. As a next step, however, one would want to
evaluate whether changes, for instance, in object familiarity can be captured by variations in the
critical parameter. That is, modellers need to move beyond fitting the data to a single data to
test whether qualitative changes in parameter values are appropriate. There are other examples
of modifying parameters to accommodate experimental data that we have covered in this chap-
ter, particularly the simulations of flanker interference in the ”Eriksen” paradigm (Eriksen &
Eriksen, 1974). Flanker interference has been observed in both MORSEL and SAIM. In SAIM
the spatial location of the target location was primed to reflect the knowledge of participants
about the location of the target and targets would be selected in preference to distractors. This
seems a plausible assumption based on the standard Eriksen flanker procedure, where the lo-
cation of targets is known in advance by observers. However, the magnitude of spatial priming
had to be limited, otherwise any competitive interference from distractors would be eliminated.
This can be considered as a somewhat arbitrary fitting of parameters to the data, to generate
interference effects of appropriate size. This argument also applies to MORSEL, where the ef-
ficiency of selection in the attentional module had to be reduced to generate the interference
effect. Though it is of course important for models to demonstrate that they are capable of
simulating a broad range of human data, it is clear that the resulting conclusions are more
interesting and general when they emerge from intrinsic properties of models, using the same
set of parameters.
Finally, an important aspect of computational modeling is that it can enable researchers to
draw-in constraints that come from outside the parent discipline. For example, our focus in this
chapter has been on computational models of cognitive data, and we have not discussed models
that attempt to capture neurophysiological data. However, it is certainly possible for models in
this area to be linked to such data (e.g. Deco & Zihl, 2001). Models also capture some of the
motivating computational principles that presumably guided selection and object recognition
(see Marr, 1982), and so can link to work in artificial intelligence as well as in psychology. By
incorporating such constraints, models will move beyond being ”mere” implementations of a
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particular psychological theory to become framework for understand attention, from the single
cell to the system level (see Seidenberg, 1993 for an in-depth discussion of this).

Modeling neuropsychological data

In the field of attention, computational models have been evaluated not only by comparing
their results to data from normal observers, but also by simulating neuropsychological data. In
these simulations the effects of brain lesions have been modeled in a variety of ways, including:
adding noise to the activation values (in SERR Humphreys & Müller, 1993) and reducing the
weights on connections (e.g. in SAIM Heinke & Humphreys, 2003). At present it is not clear
how best to simulate the effects of brain lesions in models and alternative procedures could
include eliminating connections or adding varying degrees of noise across each iteration of a
network (Olson & Humphreys, 1997). One relevant issue is whether the lesion should selectively
affect processing in one part of a model or whether it should expert a more pervasive influence.
Humphreys et al. (1992) changed a global parameter affecting all stages of their model, to
simulate agnosia. In contrast, reduced weights on connections in one part of the field may
be useful for simulations of neglect, since this deficit appears to reflect a spatial imbalance in
selection. It remains for future work to establish how different forms of simulated lesion may
capture the contrasting effects of brain damage on human performance.

Conclusion

In this review we have highlighted contributions of computational models to research on vi-
sual selective attention. These contributions include demonstrating that traditional dichotomies
such space-based versus object-based attention, early vs. late selection, and representational vs.
attentional accounts of visual neglect do not necessarily hold. In each case selective processing
in the models arises from competitive mechanisms in which units interact to gain control of
behaviour, and attention can be an emergent property of the network and not a distinct mod-
ule in its own right. The models can provide detailed accounts of both normal and abnormal
selection and some models can also do this across a range of different tasks. We conclude that
computational models do provide a useful contribution to research in this area.
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