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Abstract

We recently introduced a computational model, SAIM (Selective Atten-
tion Identification Model), which is capable of simulating visual disorders
in brain lesioned patients, including visual neglect and extinction [12].
Here, we report that the same model can both simulate known atten-
tional effects in normal subjects and make novel verifiable predictions.
SAIM aims to achieve a translation-invariant object recognition by map-
ping inputs from their location on the retina to a translation-invariant
"focus of attention”. Inputs are competitively identified by matching to
stored templates. When there are multiple items in the field, there is
also competition between the items to win the mapping process. With
these mechanisms, SAIM can reproduce qualitatively the results of (1)
the Eriksen "flanker” experiment, where RTs increase when a target is
flankered by distractors of the opposite response category; and (2) the
Posner spatial cueing paradigm, where RTs increase, when the locations
of cues do not match the locations of targets. In the cueing paradigm
SAIM also predicts that on invalid trails the target is perceived as being
shifted more into the periphery {overshoot effect). We have confirmed
this prediction experimentally. In SAIM, attentional effects are emergent
properties of the competition for limited resources which is needed to
achieve a translation invariant object recognition. In humans, there may
be no need to posit an explicit attentional system to account for emergent
» attentional” effects on behaviour.

1 Introduction

Visual scenes typically contain many objects and require "attention” to be
analysed. There is a large literature of experiments looking at the effects of
attention on visual scene analyses (see [18] for a recent summary) and, linked to
this, several attempts have been made to model the data within a connectionist
framework. Here, we outline an approach that has, as its aim, the development
of a model for translation-invariant object recognition. To achieve this, the
model operates selecting so that only one object at a time is mapped through
to recognition procedures. ” Attentional” behaviour emerges out of the compu-
tational constraints of object recognition.

Previous formal models of visual attention have been developed within rather
limited contexts, so that simulations are specific to a particular experimental
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Fig. 1: Overview of SAIM. In order to achieve a translation-invariant object
identification, SAIM maps the visual field through to a smaller FOA. This
mapping is performed by two networks: The contents network contains ”sigma-
pi” units, that determine the activation values assigned to units in the FOA
by combining multiplicatively activation in retinal units with that in units in
the selection network. The selection network determines which retinal units
have their activation values mapped through to the FOA (via the contents
network). Which retinal units come to be mapped through to the FOA is
determined by process of mutual constraint satisfaction between units in the
selection network. The knowledge network introduces knowledge about objects
into SAIM and modulates the behaviour of the selection network in a top down
way.

paradigm. One example of this is the model proposed by Cohen et al. [3].
This model mimics spatial cueing effects whereby the detection of a target is
enhanced when it is preceded by a spatially valid pre-cue [19] (see Sec. 3.2
for detailed description). The model has simple detection units, fed both by
input units coding visual intensity and attention units, one for each visual field.
Attention units compete, so that damage to one (for one visual field) leads to
particularly poor responses when a target in the "impaired” field is preceded
by a cue in the "intact” field, i.e., there is a ”disengagement” deficit. However,
the model is capable of doing no more than detecting simple stimuli and it does
not encompass a broader range of phenomena such as those requiring pattern
recognition.

Other models of attention, such as Guided Search by Wolfe [20] and SEarch via
Recursive Rejection (SERR) by Humphreys and Miiller [11] can accommodate
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a broader range of findings dealing with human visual search, but remain lim-
ited as general accounts of selective processing in vision. Guided Search uses a
saliency map, based on summed activation from maps that detect simple visual
features. Activation in the maps depend on lateral inhibitory interactions, so
that items different from their neighbours are strongly activated. Locations in
the saliency map are interrogated serially by a second attentional process, with
those with most activation interrogated first. Given noise in the interrogation
process, patterns of human search can be captured. However, the model fails to
cope with evidence showing response competition from items in the field even
when a target can be attended in advance — as in the classical Eriksen flanker
task [7] (see Sec. 3.1 for detailed description). The model is also constrained
to visual search.

SERR [11] provides a connectionist implementation of aspects of Duncan and
Humphreys’ attentional engagement theory [6]. This theory holds that search
is affected by competitive grouping between nontargets and between targets
and nontargets, with target detection based on a match between the items
processed in parallel and a memory template for the target. Humphreys and
Miiller [11] showed that SERR can accommodate existing data on visual search
and that it can even make verifiable predictions. Also, the architecture of the
model is not limited to visual search tasks, since it incorporates a mechanism
for object identification: template matching. However, template matching in
SERR was not modelled in detail, and it relied in memory representations for
targets and distractors coded for every location in the visual field. There are se-
vere problems in scaling up this model to deal with recognition of broad classes
of object, presented in a variety of locations.

One other model that links together object recognition and attentional pro-
cessing to some degree is MORSEL, introduced by Dozer [15]. MORSEL has a
parallel pattern recognition system with translation invariance being achieved
by mapping visual features to increasingly complex detectors which sample
from increasingly wider areas of visual field. Recognition when two or more
objects are presented is improved by the operation of a second, attentional net-
work, which enhances activation in the pattern recognition system at attended
locations. The attentional mechanism has some flexibility in the area of space
that can be activated, and it does not influence performance in an all-or-none
fashion. MORSEL has primarily been applied to word and letter recognition
tasks. Whether its approach to translation-invariant recognition would be suc-
cessful in a broader sphere is questionable, however, especially as it demands
that every object be presented at every location in the input during the training
procedure. Also the model has some difficulty accommodating the full range
of neuropsychological disorders of attention that have been reported. In the
syndrome of visual neglect, for example, patients may have a relatively pure
"object-based” deficit in which they neglect one side of an object whatever its
position in space. This can mean that (e.g.) the left side of an object can be
neglected-even when that object is in the right visual field, whilst the right side
of an object in the left field is reported correctly [12]. It is difficult for a model
using a retinally-coded attentional system to account for such effects.
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Humphreys and Heinke [12] presented a model for translation-invariant object
recognition that incorporated spatially selective processing of visual stimuli.
The model,SAIM, is similar to the ”dynamic routing circuit”-type model pro-
posed by Olshausen [16]. Multiple objects, when present, compete for a dom-
inant mapping to be achieved between their retinal location and a template-
based recognition system, mediated by a window or "focus of attention” (FOA).
Templates respond in a translation invariant manner, since input is transposed
(in the mapping process) from a retinal, co-ordinate system to a system based
in the centre of gravity of an object. The model is not limited to particular
paradigms or classes of objects, providing templates are learned for the stimuli
in question. Humphreys and Heinke examined the performance of SAIM when
”]esions” were implemented at different levels of the model. They showed that
forms of object-based neglect could occur, as well as, retinally-based neglect,
depending on where a lesion was located (spatially selective lesions affecting
the mapping into one side of the FOA produced forms of object-based neglect).
This prior work shows that SAIM has the potential to model a number of
paradigms and to capture a range of neuropsychological data, both of which
have proved difficult for other accounts. Here, we examine whether SAIM
can accommodate classic results on visual attention in normal observers and
whether it is capable of generating novel, testable predictions.

2 SAIM

In SAIM, translation invariant object identification is achieved by mapping a
retinal input through multiscale stages into a smaller FOA. This mapping is
achieved by a dynamic routing circuit, that has a modular structure contain-
ing two subnetworks: one performs the mapping from the retina into the FOA
(the ”"contents network”) and a second controls this mapping (the ”selection
network”). Mapping from the retina to the FOA is achieved in SAIM via sin-
gle stage. This single stage fails to achieve size-invariant recognition, and a
multi-stage process may be necessary for this [17]. However, we assume that
the general explanatory power of the model is not lost, particularly, since we
maintain the key idea of interest here, which concerns spatial selection. Figure
1 gives an overview of the resulting one stage architecture of SAIM. The model
used here extends previous dynamic routing circuits models, including the ver-
sion of SAIM presented in [12], by adding a knowledge network, for object
recognition. This networks involves recognition templates activated according
to learned weights connecting them to locations in the FOA.

In order to design the topology of SAIM, we formulated constraints support
the fulfilling of the computational objectives, e.g., the correct template unit
should become active and the wrong ones should be suppressed, and the con-
tents of the FOA should represent the contents of the visual field optimally.
These constraints defined the minima in an energy function. A gradient de-
scent in this energy function leads to a set of nonlinear differential equations,
which define the topology between the units in SAIM. This approach follows,
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in general, the work of {10}, where it was applied to the travelling salesman
problem. In Heinke and Humphreys [9] a detailed, mathematical description
can be found. The resulting topology consists of cooperative and competitive
interaction within the selection network and competitive interactions (Winner
Take All) in the knowledge network.

3 Results

3.1 Basic Behaviour and Eriksen Flanker Task

Cross

Contents of the visual tield: cross (see template)

Fig. 2: This figure illustrates the behaviour of SAIM. The pictures on the
top show the time course of the template units (left) and the corresponding
templates (right). The pictures on the bottom show the time course of the
FOA activity.

Figures 2 and 3 show the basic behaviour of SAIM for different numbers of
objects in the visual input (a cross and a cross along with the number 2).
Comparison of the two results shows that the activity of the matching template
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Fig. 3: This figure illustrates the behaviour of SAIM. The pictures on the
top show the time course of the template units (left) and the corresponding
templates (right). The pictures on the bottom show the time course of the
FOA activity.

passes a certain threshold, e.g. 0.9, at different points in time. If one assumes
that passing the threshold, corresponds ”object identification”, then the reac-
tion time (RT) of the model increases with the number of objects present. This
result and other simulations, show that RT in SAIM depends on competitive
interactions in the selection network and the knowledge network. In this frame-
work effects of the number of items in the field, as found in visual search tasks,
result from constraints involved in translation invariant object recognition; it
is not necessary to assume a saliency map in order to model such results (as in
the Guided Search).

The competitive interactions in SAIM enable it to be applied to the Eriksen
flanker experiment [7]. Typically here the task is to decide if a letter at a known
location belongs to one of the known categories and to press the corresponding
lever. Two letters may be presented, e.g. H and K, belonging to one response
category and two other letters, e.g. S and C, belonging to a second response
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cross X

Fig. 4: These templates are used for reproducing the results of the Eriksen
task.

category. Displays can be compatible or incompatible. In the compatible con-
dition the target letter may be flanked by letters that are either identical to
it or by that other letter from the same response category. The incompatible
displays the target flanked by letters of the opposite response category. RTs
are increased in the incompatible relative to the compatible condition.

To simulate this paradigm, we assigned one template (limited to one letter)
to one response category, and another to the other letter. Fig. 4 shows the
templates used. Because the space in SAIM’s visual field is not sufficient to
have for more than two letters, only two letters in each display were used. Pre-
knowledge of the target’s location was implemented by biasing the selection
network at the location of the centre of the target. A bias in SAIM is realised
by giving biased units a higher activity for their initial value relative other to
units.

Figure 5 gives SAIM’s RTs under three conditions: (i) When the stimuli in the
field activate a common template (the compatible condition, e.g. cross and
cross), (ii) when only the target has a template (the neutral condition, e.g.,
cross and C, which has no template), and (iii) when the stimuli in the field
activates competing templates (the incompatible condition, e.g., cross and X,
which both have templates). RTs were slower in the incompatible condition.
Note also that, relative to the neutral condition, interference is greater (with in-
compatible stimuli) than facilitation (with compatible stimuli). This pattern of
greater interference than facilitation has frequently been observed in response
competition effects in humans [4). Here it emerges as a natural consequence
of processing dynamics in the network. SAIM could easily be extended to ac-
commodate the standard Eriksen result with more than 1 letter assigned to
each response category, for example by adding a further set of category tem-
plates (employing similar dynamics), above the level of templates for individual
letters.

3.2 Spatial Cueing Paradigm

In a second set of simulations, we have examined whether SAIM can capture
another classic effect on visual attention: the effect of spatial cueing. Many ex-
periments have shown that humans RT to detect a simple target are enhanced
if the target is preceded by a valid spatial precue and disrupted if preceded by
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Fig. 5: These images show the simulation of the Eriksen task. The image.s in
the columns show the RT for object the compatible, neutral and incompatible

condition.

an invalid cue. For our simulations, the cue was a simple square and the target
a small cross (see Fig. 6). The cues was presented for 1.3 and followed by the
target cross which remained on until the network responded. The network
response was based on a complete appearance of the target in FOA (as shov{n).
On valid trails the cue fell at the same location as the cross; on invalid trials
it fell at a different location. ) .

Figure 6 shows the results, which fit those found with human subjects. 'Irhe
reason for the cueing effect in SAIM is due to its cooperative connections which
maintain activity in selection network following the cue. This maintenance of
activity due to cooperative connections is a well-known property of fletworlfs
with dynamic cooperative and competitive interactions [1]. In the valid COIl.dl-
tion, activity from the target is boosted by the sustained activity in the se.lectfon
network, leading to a cueing benefit. In the invalid condition, target actlvatpn
has to compete against the sustained activation of the cue, causing a cueing
cost. Note that the cueing effects emerged here even though the network has
no explicit mechanism for engaging or disengaging attention. This reiterates
the point made by other connectionist models in this field (e.g. [3]), that at-
tentional engagement and disengement can reflect network states rather than
processing mechanisms devoted to there operations. _
These simulations with SAIM also showed an additional effect. The images
on the bottom row of Fig. 6 depict the result when the target is in the right
field and preceded by an invalid cue in the left field. The figure reveals that
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1=0.0 t=1.8 1=2.0 t=22 1=2.4

t=6.0

Fig. 6: These images show the results of simulating the spatial cueing effect (see
text). The upper images show the simulation result in the valid condition and
the lower image show the results in the invalid condition. The reaction time
is clearly longer in the invalid condition (¢ = 6.0) than in the valid condition
(t = 2.2). This result matches with the findings on the spatial cueing. However,
the model shows an additional effect. In the invalid condition the location of
the cross is misplaced. If the target appears on left side, the cross appears
on the right of the FOA. If the target is on the right side, the cross appears on
the left side of the FOA. This predicts an overshoot effect for the localisation
of the target in the invalid condition (see text for details).

the target cross is misplaced within the FOA. It is shifted fro the centre of
the FOA in a direction towards to the location where the invalid cue appeared.
This shift can be conceptualised in the following way. Normally, in mapping
from the retinal represention of an object to the FOA, the centre of gravity of
the object is placed in the central part of the selection network (ensuring that
this centre of gravity is then mapped to the centre of the FOA). It is as if the
network is trying to align a marker for the centre of gravity (the central part of
the selection network) with the centre of the object on the retina. Now, in the
case of invalid spatial cueing, this alignment process is repulsed away from the
cue, due to competition, so that the marker for the centre of gravity gets shifted
to align with the right side of the cross (when the cue is left and the target
right). The result of this incorrect alignment is that the target is mapped into
the left side of the FOA, because the centre of gravity indicated in the selection
network falls on the right side of the cross. From this, a prediction can be
made concerning human location judgements. We might assume that human
location judgements are based on where the spatial marker for the centre of
gravity (activity in the central part of the selection network) aligns with the
retina. On invalid cue trails, this alignment is shifted away from cue. On invalid
cue trials, this alignment is shifted away from cue. Under these circumstances,
judgement may be made that the target is further into the invalid field than it
is really the case. In other words, there an ”overshoot” of the perceived centre
of gravity. This possibility was examined empirically.
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4 An experimental test

To test the prediction of an overshoot under invalid cueing conditions, we ran
a spatial cueing study in which subjects had to make a localisation judgement
to targets. The cue was an open circle and the target a simple star (*). The
centre of the cue and the centre of the target could appear at 14 different lo-
cations, 7 locations left and 7 locations right of the fixation cross. Following
the presentation of the target, subjects saw a horizontal scale in the field where
the target appeared, numbered 1 to 7. The locations of the numbers on the
scale exactly corresponded to the seven possible locations of the target. The
numbers appeared in increasing order from left to right. The experimental pro-
cedure was as follows: First, a fixation cross appeared on the screen for 1000
ms. After that, the cue appeared at one of the 14 locations for 100ms. After
that the target appeared either at the same location or at the corresponding
location on the opposite side of the fixation cross, again for 100 ms. Finally,
the line of numbers appeared for an unlimited presentation time. The subjects
were asked to press the number, corresponding to where they saw the target.
If they did not see the target at all, they pressed the space bar. There were
196 trails and all conditions were equal likely.

The data of 15 subjects were analysed by averaging the difference between the
target location and the perceived location for the valid and the invalid condi-
tion, separately. The average for the invalid condition showed that subjects
were more likely to select more peripheral locations than in the valid condition.
The displacement was 0.65° (F(1,14) = 75.15,p < 0.01). This experimental
finding confirms the prediction of SAIM.

5 Discussion

In this paper we presented simulation results from SAIM, a translation-invari-
ant object identification network, which maps inputs into a FOA by cooperative
and competitive interactions. The model can account for classic findings in the
literature on human visual attention, such as the Eriksen flanker and spatial
cueing effects. For spatial cueing effects SAIM also made a novel prediction,
that we confirmed by a simple experiment. All the presented results arise out
of simple competition for spatially limited resources in mapping retinal input
to an object-centred output representation in the FOA. It follows that atten-
tional effects in the human literature may be considered emergent properties
of competition for spatial mapping and not the influence of a system devoted
specifically to shifting attention in space.
Of course, SAIM has many shortcomings. For instance, it does not have a
feature extraction stage, it uses only simple proximity-based grouping and, in
particular, the selection network has too many units and connections for it to
be scaled-up easily. However, we believe that solutions to these difficulties will
not change the basic results from the model.

In addition to accounting for behavioural data, the simulation results can
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also be related to single cell studies. Several single cell studies have found cells
in the inferior temporal cortex (IT, part of the »What-system”) which code
complex features, such as mixtures of colour, shape or texture in ways that are
relatively independent of stimulus location (e.g., [8]). Here, the template units
of the knowledge network represent a simple model of such complex feature
detectors with the current emphasis on the coding of shape. Studies have also
shown that cells in IT that are modulated by the attentional behaviour of
animals [2; 14]. For instance responses of IT cells to stimuli are suppressed if
animals have to ignore the stimuli [14]. Again, this would correspond to the
behaviour of the template units in the knowledge network, where the responses
to an object in the visual field are suppressed when the object is ignored by
SAIM. In SAIM, this attentional suppression can occur both by precueing on
target location or by priming one template so that it dominates the competition
with other templates. These different forms of suppression may also be evident
in physiological studies of attentional modulation [2; 14].

In contrast to the knowledge network, the selection network may be considered
part of a "where-system”. Units in the network respond to the location of
target elements. Preactivating such units leads to spatial cueing effects. This
last result can be related to single cell studies in the parietal cortex, where
enhancement of activity takes place in neurons responding to the location of
objects, where attention is directed [5].

The distinction between the knowledge and selection network may be mapped
onto the distinction between *what” and ” where” processing in the brain {13].
SAIM, however, suggests that these two pathways may interact, to produce
coherent selective processing for object recognition.
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