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This document is not a standalone document as it supplements the Frontiers article A robotics-based
approach to modeling of choice reaching experiments on visual attention. The document contains
mathematical details and explanations of the technical solutions for the model presented in the
article.

Introduction to the appendix

This chapter introduces the model’s equations in more detail. For a more qualitative descrip-
tion of the model’s behaviour and the simulation results we refer to the original article. The first
part of this appendix describes the mathematical details of the dynamic neural fields. The second
part specifies the mathematics of the inverse kinematics. A summary of the model’s parameter
setting can be found in the last part of the appendix.

Mathematical details of the dynamic neural fields

The model consists of multiple dynamic neural fields (DNFs, see Erlhagen & Schoener, 2002
for a review) which are interconnected and influence each other. The DNFs are: base map (B), end-
effector map (E), target colour map (Tcol), target location map (Tloc), target location hand centred
map (THC

loc ) and velocity map (V ). The maps without DNF dynamics are the three colour maps:
blue map (colblue), green map (colgreen), red map (colred) and the preactivation maps: preactivation
colour map (precol), preactivation location map (preloc).
The general DNF equation which can be also found in the article is as follows (see also Amari,
1977):

τ u̇(x, t) = −u(x, t) + h+ s(x, t) +

∫
w(x− x′)f

(
u(x′, t)

)
dx′ + q(x, t) (1)
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Hereby τ is a time parameter, u(x, t) stands for the field activation at time t and location x,
h < 0 is the resting level of the field, s(x, t) describes the external input of the field, w(x) is the
activation kernel function and q(x, t) describes normally distributed gaussian noise. Note that x is
two-dimensional for the most applied DNFs.
In the integral term there is the kernel function w, which is defined in equation 6 and the field
output function f , which is a sigmoidal function with the parameters β (slope) and u0 (threshold):

f(u) =
1

1 + e−β(u−u0)
(2)

For the implementation of the model, equation 1 was adapted: the integral term was discretized
and split up into separate excitatory and inhibitory components. Furthermore a global inhibitory
component was added. This is a common way to implement DNFs (see also Faubel & Schoener,
2008).

τ u̇(x, t) = −u(x, t) + h+ s(x, t) + excloc(x, t)− inhloc(x, t)− inhglob(x, t) + q(x, t) (3)

Thus, excloc and inhloc define the local excitation and inhibition with the following equation:

excloc(x, t) =
∑
x′

wexc(x− x′)f
(
u(x′, t)

)
(4)

The global inhibition inhglob takes the total field activation into account:

inhglob(x, t) = ginh
∑
x′

f
(
u(x′, t)

)
(5)

Finally, the kernel wk with its parameters σk (kernel width) and ck (kernel strength) is defined with
the following equation:

wk(x) =
ck

σk
√
2π

exp

(
−|x|2

2σ2
k

)
(6)

Kernel functions are applied in the local excitation, inhibition and the noise q in each DNF. Addi-
tional kernels are applied in some DNFs to change input characteristics (e.g. to broaden outputs of
the velocity map).
For different DNFs the field equation is similar with a few exceptions:

• The Tcol map possesses only 2 neurons (one for each possible target colour) and is treated
as a standard neural field with just one dimension. Also the corresponding non dynamical precol
map only has 2 neurons. All other DNFs and maps are two-dimensional with the spatial resolution
of 80× 60.

• The (non-dynamical) preactivation maps (precol, preloc) are manually defined. As these
maps can not change over time, they do not possess a time dimension.

• The input term s(x, t) differs in all DNFs according to the input the fields receive. The
different inputs are described in the following.

Input terms of the DNFs

Each DNF receives a specific input according to its functionality. There are two states of
inputs of the DNFs: before and during the simulation.
Before the simulation is started and a GO signal is sent to the model, the input for all DNFs is
by default a map without activation (zero map). However, due to the preactivation feature, some
DNFs receive preactivation maps instead of a zero map. In the following the input maps of all
different DNFs are described.
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Base map input

The base (B) map only receives the blue colour map as input:

sB(x, t) = colblue(x, t) (7)

Endeffector map

The endeffector (E) map receives the blue colour map as positive and the B map as negative
input:

sE(x, t) = colblue(x, t)− fB
(
uB(x, t)

)
(8)

Target colour map

The Tcol map consists of two neurons, each representing one possible target colour. It can be
influenced by preactivation (colour priming) and therefore receives the precol map as input before
the GO-signal is sent to start the simulation. After the simulation has been started each neuron
receives the added field activation of the corresponding colour map.
Before GO-signal:

sTcol
(1, t) = precol(1) for neuron 1 (green) (9)

sTcol
(2, t) = precol(2) for neuron 2 (red) (10)

After GO-signal:

sTcol
(1, t) =

∑
x

colgreen(x, t) for neuron 1 (green) (11)

sTcol
(2, t) =

∑
x

colred(x, t) for neuron 2 (red) (12)

Target location map

The Tloc map receives a combined input of Tcol and the colour maps. This way it can be
guaranteed that the odd colour always has an advantage over the distractor colour in later stages of
the simulation. This map also can be influenced by preactivation (spatial priming) and it receives
the preloc map as an input before the GO-signal.
Before GO-signal:

sTloc
(x, t) = preloc(x) (13)

After GO-signal:

sTloc
(x, t) = colgreen(x, t)fTcol

(
uTcol

(2, t)
)
+ colred(x, t)fTcol

(
uTcol

(1, t)
)

(14)

Target location hand centred map

The input for the THC
loc map is the combined output activation of the E and the Tloc map. It

is combined in a way that the location of the activation in the THC
loc map represents the difference

of the location of the activations in the other two maps. With the origin in the center of the THC
loc

map (xmax
2 ) the activation in the map corresponds to the position of the endeffector. Therefore,

an activation at the centre of the THC
loc map would represent a target at the endeffector’s position,

while a target away from the endeffector would result in an activation away from the map’s centre.
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sTHC
loc

(x, t) =
∑
xTloc

∑
xE

fTloc

(
uTloc

(xTloc
, t)

)
fE

(
uE(xE , t)

)
(15)

with: x =
xmax

2
+ xTloc

− xE (16)

Here it is possible to apply a target activation threshold l to the model. If the output activation
value fTloc

(
uTloc

(xTloc
, t)

)
is greater than l, then the output value is applied. If not, the output

activation is set to 0.

Velocity map

The velocity (V ) map performs the moving blob behaviour described in the article. Therefore,
it possesses two fairly broad input activations: The first input is a predefined Gaussian activation
in the centre of the map which represents the resting hand (zero velocity). The second input is a
broadened output of the THC

loc map. The broadening is performed by an additional kernel function
Vinp. With these two inputs a stable and slowly moving activation (rather than vanishing or jumping
activations) can be induced.

sV (x, t) =
czero

σzero
√
2π

exp

(
− |x|2

2σ2
zero

)
+

∑
x′

wVinp(x− x′)fTHC
loc

(
uTHC

loc
(x′, t)

)
(17)

Mathematical details of the inverse kinematics

The inverse kinematics deals with the problem of determining the angles of the robot arm given
the arm positions. Generally, it should be noted that the robot only moves in a two-dimensional
space and only possesses two joints: shoulder and elbow. In order to solve the inverse kinematics
problem, knowledge about the cartesian position of the base and the endpoint is crucial. Further-
more, the length of the parts of the arm or the joint’s coordinates must be known to find a solution.
However, with the lengths of the arm’s parts the solution is not unique (two possibilities: left and
right arm angles). Note that because we assume that we simulate the right arm of a person the
angles the second solution can be discarded here.

Trajectory generation

First the velocity vector is obtained from the activation of the velocity map. This is done by
looking for the maximum in the DNF. From the resulting position x in the DNF xmax

2 has to be
subtracted to get a hand-centred vector.

v = max
x

uV (x, t)−
xmax

2
(18)

In the next step the non-linear encoding of the velocity map is applied. The velocity vector v is
normalized and raised to a higher power defined by the vector encoding power parameter m. For
values m ̸= 1 the encoding is non-linear.

vscaled = |v|m−1v (19)

In order to generate a straight trajectory towards the target a desired future position is determined
with the current position (obtained from the E map) and the scaled velocity vector vscaled. A
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Figure 1. Vector model of the robot arm

For calculating the kinematics with only endpoint (or target), base and armlengths some additional
helping points are needed. Also two cases need to be distinguished: α > π and α ≤ π

further scaling of the velocity vector is applied in order to ensure that the future point will not be
located behind the actual target, since the vector vscaled can be extended significantly due to the
nonlinear scaling.

xcurrent = max
x

uE(x, t) (20)

xfuture = xcurrent + avscaled (21)

The next step is to calculate the joint angles α and β of the robot arm out of the current and future
position vectors xcurrent and xfuture. This is done using the equations 31 and 32. The following
section only show the derivation of these equation with the trigonometry of the robot arm (see also
Figure 1).

Inverse Position Kinematics with two points and armlengths

The inverse position kinematics of a robot arm deal with the problem to determine the arm’s
angles out of the (cartesian) locations of endpoint, joints and base of the robot arm. Our LEGO
Mindstorms NXT based robot arm operates in a two-dimensional space and possesses two joints.
It is a simplified model of a right arm of a human. Therefore restrictions for the joints apply
e.g. the ellbow angle β can not exceed 180◦ (see Figure 1 for the naming of the arm parts). This
restriction of the angles make the inverse position kinematics problem unique, even when there is
the joint’s position J unknown. However, the length of both armparts (b = lengthupperarm and
j = lengthforearm) must be given.



AROBOTICS-BASED APPROACH TOMODELINGOF CHOICE REACHING EXPERIMENTS ON VISUAL ATTENTION—APPENDIX6

The following derivation uses mainly trigonometrical relations to calculate the angles α and
β with the vectors b (base to joint), j (joint to end) and r (reach vector, base to end). Additionally,
r is decomposed into two parts rl (base to H) and ru (H to end). With the triangle EExB the left
part of α can be determined.

αleft =
arcsin ry

|r|
for rx < 0 (22)

αleft = π − arcsin ry
|r|

for rx ≥ 0 (23)

With the triangles HBJ and HJE |rl| and |ru| can be determined.

|ru| =
|r|2 + |j|2 − |b|2

2 |r|
(24)

|rl| = |r| − |ru| =
|r|2 − |j|2 + |b|2

2 |r|
(25)

Now the remaining angle parts can be determined with the triangles HBJ and HJE.

αright = arccos
|rl|
|b|

(26)

βleft = arcsin
|rl|
|b|

(27)

βright = arcsin
|ru|
|j|

(28)

Finally the angle parts can be added up.

α = αleft + αright (29)

β = βleft + βright (30)

The above equations can be put into a single equation for both of the angles α and β, which results
in the following equations for the inverse kinematics:

α =

{
arccos |rl|

|b| +
arcsin ry

|r| for rx < 0

arccos |rl|
|b| + π − arcsin ry

|r| for rx ≥ 0
(31)

β = arcsin
|rl|
|b|

+ arcsin
|ru|
|j|

(32)

Motor speed calculation

With the given positions xcurrent and xfuture and the equations 31 and 32 the current angles
αcurrent, βcurrent and the desired future angles αfuture, βfuture and in the next step the desired angle
changes ∆α and ∆β are determined.

∆α = αfuture − αcurrent (33)
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The motor speed values speedα and speedβ are a result of a multiplication of the desired angle
changes with the speed scaling parameters dgen, dshoulder and dellbow.

speedα = dgendshoulder∆α (34)

speedβ = dgendelbow∆β (35)

The general speed factor dgen is utilised to correct the speed to an appropriate level, the reuslting
speed values speedα and speedβ have to be within the range of 0 and 100. An adaptation of dellbow
and dshoulder can be necessary to correct gear ratios of the particular joints.

Parameter

In this section all parameter values which were used in the experiments of the article are
listed. The majority of parameters were the same in the three experiments and can be found in
the section general parameter. The other sections deal with the parameters which were changed for
running the experiments. All parameters are stored in a XML-File. The default XML-File always
has to be loaded after the start up of the program.

General parameter

Detection parameter. In order to find the coloured markers or to reduce the noise in the
activation of the generated colour maps it can be necessary to adapt the detection parameters
before starting the simulations. Since the image processing takes place in the HSV colour space,
noise may occur if high and low values for S and V (which represents the colours white and black)
are not filtered out. The following table documents typical values. However, under difficult con-
ditions (change of lights during the day, dawn or night) these parameters have to be slightly adjusted.

map hue ∆hue sv ero

colblue 250 50 15 1
colred 5 15 40 1
colgreen 100 50 35 2

The parameter names have the following meaning: the desired hue value (hue), the hue
tolerance (∆hue), the saturation-value limit (sv) and the number of erosion steps (ero). With an
increase in the sv value, detected black and white colours can be filtered out while a higher ero
value can decrease noise of isolated pixel.

DNF parameter. For each DNF a set of parameters has to be defined. The following table
lists these parameters:

map τ β h ginh cexc σexc cinh σinh cq σq
B 25 12 -2 0.3 80 3 20 10 0.05 1
E 2 12 -0.5 0.2 20 3 0 1 0.05 1
Tcol 60 12 -0.1 7 10 0.1 10 1 0.05 1
Tloc 30 1.5 -6 0.4 40 4 30 8 0.05 1
THC
loc 15 12 -1 1 30 5 20 10 0.05 1

V 20 12 -1 0.2 10 5 0 1 0.05 5
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Miscellaneous. The next table contains further parameters of the model. For a more detailed
description see the first sections of this appendix.

parameter description value

l threshold of Tloc 0.1
czero strength of zero activation in V map 10
σzero width of zero activation in V map 40
cVinp kernel strength of Vinp 10
σVinp kernel width of Vinp 40
m magnification factor 1.5
a vector scaling factor 0.1
dgen general speed factor 1.2
dshoulder shoulder speed factor 1
delbow elbow speed factor 1

Target reached conditions. Two conditions have to be fulfilled: the distance of endeffector
and target has to be less than 4 cm and the length of the velocity vector v is less than 4.5.

Parameters of Experiment 1

In the first experiment the robot performed movements to single targets in the workspace
while the velocity profile was analyzed. Different simulations were performed with a different
encoding of the velocity vector v. Furthermore the general speed was adapted.

parameter description value

m magnification factor 1
dgen general speed factor 5

m magnification factor 1.5
dgen general speed factor 1.2

Parameters of Experiment 2

The second experiment aimed for a simulation of the curved trajectories which were observed
by Song and Nakayama (2009). Therefore the preactivation parameters were changed. The
following table contains the adapted parameter for the colour priming. The first two rows describe
the baseline parameter straight trajectory, the last rows the parameter for the curved trajectory :

map position strength σ

precol 1 (green) 10 0
precol 2 (red) 20 0

precol 1 (green) 20 0
precol 2 (red) 26 0
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The following table contains parameters for the spatial priming. The first three rows describe
the baseline parameter (straight trajectory, the last rows the parameter for the curved trajectory :

map position strength σ

preloc left (23, 22) 0 2
preloc center (40, 15) 0 2
preloc right (58, 22) 0 2

preloc left (23, 22) 4 2
preloc center (40, 15) 0 2
preloc right (58, 22) 0 2

Parameters of Experiment 3

In the last experiment the influence of the threshold parameter l was explored. In the
baseline the parameter remained at the default value of l = 0.1, while in the other conditions
l = 0.6 was applied. Additionally, the following colour priming was applied:

map position strength σ

precol 1 (green) 20 0
precol 2 (red) 5 0
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